scholarly journals Occurrence, Classification and Formation Mechanisms of the Organic-Rich Clasts in the Upper Paleozoic Coal-Bearing Tight Sandstone, Northeastern Margin of the Ordos Basin, China

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2694
Author(s):  
Guanqun Yang ◽  
Wenhui Huang ◽  
Jianhua Zhong ◽  
Ningliang Sun

The detailed characteristics and formation mechanisms of organic-rich clasts (ORCs) in the Upper Paleozoic tight sandstone in the northeastern margin of the Ordos Basin were analyzed through 818-m-long drilling cores and logging data from 28 wells. In general, compared with soft-sediment clasts documented in other sedimentary environments, organic-rich clasts in coal-bearing tight sandstone have not been adequately investigated in the literature. ORCs are widely developed in various sedimentary environments of coal-bearing sandstone, including fluvial channels, crevasse splays, tidal channels, sand flats, and subaqueous debris flow deposits. In addition to being controlled by the water flow energy and transportation processes, the fragmentation degree and morphology of ORCs are also related to their content of higher plants organic matter. The change in water flow energy during transportation makes the ORCs show obvious mechanical depositional differentiation. Four main types of ORC can be recognized in the deposits: diamictic organic-rich clasts, floating organic-rich clasts, loaded lamellar organic-rich clasts, and thin interlayer organic-rich clasts. The relationship between energy variation and ORCs deposition continuity is rarely studied so far. Based on the different handling processes under the control of water flow energy changes, we propose two ORCs formation mechanisms: the long-term altering of continuous water flow and the short-term water flow acting triggered by sudden events.

2017 ◽  
Author(s):  
Chuang Liu ◽  
◽  
Jianguang Wu ◽  
Jianhua Zhong ◽  
Shouren Zhang ◽  
...  

2016 ◽  
Vol 20 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Jinxian He ◽  
Xiaoli Zhang ◽  
Li Ma ◽  
Hongchen Wu ◽  
Muhammad Ashraf

<p>There are enormous resources of unconventional gas in coal measures in Ordos Basin. In order to study the geological characteristics of unconventional gas in coal Measures in Ordos Basin, we analyzed and summarized the results of previous studies. Analysis results are found that, the unconventional gas in coal measures is mainly developed in Upper Paleozoic in Eastern Ordos Basin, which including coalbed methane, shale gas and tight sandstone gas. The oil and gas show active in coal, shale and tight sandstone of Upper Paleozoic in Ordos Basin. Coalbed methane reservoir and shale gas reservoir in coal measures belong to “self-generation and self- preservation”, whereas the coal measures tight sandstone gas reservoir belongs to “allogenic and self-preservation”. The forming factors of the three different kinds of gasses reservoir are closely related and uniform. We have the concluded that it will be more scientific and reasonable that the geological reservoir-forming processes of three different kinds of unconventional gas of coal measures are studied as a whole in Ordos Basin, and at a later stage, the research on joint exploration and co-mining for the three types of gasses ought to be carried out.</p>


2017 ◽  
Vol 54 (12) ◽  
pp. 1228-1247
Author(s):  
Zhengjian Xu ◽  
Luofu Liu ◽  
Tieguan Wang ◽  
Kangjun Wu ◽  
Wenchao Dou ◽  
...  

With the success of Bakken tight oil (tight sandstone oil and shale oil) and Eagle Ford tight oil in North America, tight oil has become a research focus in petroleum geology. In China, tight oil reservoirs are predominantly distributed in lacustrine basins. The Triassic Chang 6 Member is the main production layer of tight oil in the Ordos Basin, in which the episodes, timing, and drive of tight oil charging have been analyzed through the petrography, fluorescence microspectrometry, microthermometry, and trapping pressure simulations of fluid inclusions in the reservoir beds. Several conclusions have been reached in this paper. First, aqueous inclusions with five peaks of homogenization temperatures and oil inclusions with three peaks of homogenization temperatures occurred in the Chang 6 reservoir beds. The oil inclusions are mostly distributed in fractures that cut across and occur within the quartz grains, in the quartz overgrowth and calcite cements, and the fractures that occur within the feldspar grains, with blue–green, green, and yellow–green fluorescence colours. Second, the peak wavelength, Q650/500, and QF535 of the fluorescence microspectrometry indicate three charging episodes of tight oil with different oil maturities. The charging timings (141–136, 126–118, and 112–103 Ma) have been ascertained by projecting the homogenization temperatures of aqueous inclusions onto the geological time axis. Third, excess-pressure differences up to 10 MPa between the Chang 7 source rocks and the Chang 6 reservoir beds were the main driving mechanism supporting the process of nonbuoyancy migration.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jiaxuan Song ◽  
Hujun Gong ◽  
Jingli Yao ◽  
Huitao Zhao ◽  
Xiaohui Zhao ◽  
...  

The Paleozoic strata are widely distributed in the northwest of the Ordos Basin, and the provenance attributes of the basin sediments during this period are still controversial. In this paper, the detrital zircon LA-MC-ICPMS U-Pb age test was conducted on the drilling core samples of the Shanxi Formation of the Upper Paleozoic in the Otuokeqi area of the Ordos Basin, and the provenance age and the characteristic of the Shanxi formation in the Otuokeqi area in the northwest were discussed. The cathodoluminescence image shows that the detrital zircon has a clear core-edge structure, and most of the cores have clear oscillatory zonings, which suggests that they are magmatic in origin. Zircons have no oscillatory zoning structure that shows the cause of metamorphism. The age of detrital zircon is dominated by Paleoproterozoic and can be divided into four groups, which are 2500~2300 Ma, 2100~1600 Ma, 470~400 Ma, and 360~260 Ma. The first two groups are the specific manifestations of the Precambrian Fuping Movement (2.5 billion years) and the Luliang Movement (1.8 billion years) of the North China Craton. The third and fourth groups of detrital zircons mainly come from Paleozoic magmatic rocks formed by the subduction and collision of the Siberian plate and the North China plate. The ε Hf t value of zircon ranges from -18.36 to 4.33, and the age of the second-order Hf model T DM 2 ranges from 2491 to 1175 Ma. The source rock reflecting the provenance of the sediments comes from the material recycling of the Paleoproterozoic and Mesoproterozoic in the crust, combined with the Meso-Neoproterozoic detrital zircons discovered this time, indicating that the provenance area has experienced Greenwellian orogeny.


Sign in / Sign up

Export Citation Format

Share Document