scholarly journals Metamodeling for Uncertainty Quantification of a Flood Wave Model for Concrete Dam Breaks

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3685 ◽  
Author(s):  
Anna Kalinina ◽  
Matteo Spada ◽  
David F. Vetsch ◽  
Stefano Marelli ◽  
Calvin Whealton ◽  
...  

Uncertainties in instantaneous dam-break floods are difficult to assess with standard methods (e.g., Monte Carlo simulation) because of the lack of historical observations and high computational costs of the numerical models. In this study, polynomial chaos expansion (PCE) was applied to a dam-break flood model reflecting the population of large concrete dams in Switzerland. The flood model was approximated with a metamodel and uncertainty in the inputs was propagated to the flow quantities downstream of the dam. The study demonstrates that the application of metamodeling for uncertainty quantification in dam-break studies allows for reduced computational costs compared to standard methods. Finally, Sobol’ sensitivity indices indicate that reservoir volume, length of the valley, and surface roughness contributed most to the variability of the outputs. The proposed methodology, when applied to similar studies in flood risk assessment, allows for more generalized risk quantification than conventional approaches.

2020 ◽  
Vol 22 (5) ◽  
pp. 1351-1369
Author(s):  
Robin Meurice ◽  
Sandra Soares-Frazão

Abstract We propose a finite-volume model that aims at improving the ability of 2D numerical models to accurately predict the morphological evolution of sandy beds when subjected to transient flows like dam-breaks. This model solves shallow water and Exner equations with a weakly coupled approach while the fluxes at the interfaces of the cells are calculated thanks to a lateralized HLLC flux scheme. Besides describing the model, we ran it for four different test cases: a steady flow on an inclined bed leading to aggradation or degradation, a dam-break leading to high interaction between the flow and the bed, a dam-break with a symmetrical enlargement close to the gate and a dam-break in a channel with a 90° bend. The gathered results are discussed and compared to an existing fully coupled approach based on HLLC fluxes. Although both models equally perform regarding water levels, the weakly coupled model looks to better predict the bed evolution for the four test cases. In particular, its results are not affected by an excessive numerical diffusion encountered by the coupled model. Moreover, it usually better estimates the amplitudes of the maximum deposits and scours. It is also more stable when subject to high bed–flow interaction.


2021 ◽  
Author(s):  
Ali Abdolali ◽  
Andre van der Westhuysen ◽  
Zaizhong Ma ◽  
Avichal Mehra ◽  
Aron Roland ◽  
...  

AbstractVarious uncertainties exist in a hindcast due to the inabilities of numerical models to resolve all the complicated atmosphere-sea interactions, and the lack of certain ground truth observations. Here, a comprehensive analysis of an atmospheric model performance in hindcast mode (Hurricane Weather and Research Forecasting model—HWRF) and its 40 ensembles during severe events is conducted, evaluating the model accuracy and uncertainty for hurricane track parameters, and wind speed collected along satellite altimeter tracks and at stationary source point observations. Subsequently, the downstream spectral wave model WAVEWATCH III is forced by two sets of wind field data, each includes 40 members. The first ones are randomly extracted from original HWRF simulations and the second ones are based on spread of best track parameters. The atmospheric model spread and wave model error along satellite altimeters tracks and at stationary source point observations are estimated. The study on Hurricane Irma reveals that wind and wave observations during this extreme event are within ensemble spreads. While both Models have wide spreads over areas with landmass, maximum uncertainty in the atmospheric model is at hurricane eye in contrast to the wave model.


2021 ◽  
Vol 11 (12) ◽  
pp. 5638
Author(s):  
Selahattin Kocaman ◽  
Stefania Evangelista ◽  
Hasan Guzel ◽  
Kaan Dal ◽  
Ada Yilmaz ◽  
...  

Dam-break flood waves represent a severe threat to people and properties located in downstream regions. Although dam failure has been among the main subjects investigated in academia, little effort has been made toward investigating wave propagation under the influence of tailwater depth. This work presents three-dimensional (3D) numerical simulations of laboratory experiments of dam-breaks with tailwater performed at the Laboratory of Hydraulics of Iskenderun Technical University, Turkey. The dam-break wave was generated by the instantaneous removal of a sluice gate positioned at the center of a transversal wall forming the reservoir. Specifically, in order to understand the influence of tailwater level on wave propagation, three tests were conducted under the conditions of dry and wet downstream bottom with two different tailwater depths, respectively. The present research analyzes the propagation of the positive and negative wave originated by the dam-break, as well as the wave reflection against the channel’s downstream closed boundary. Digital image processing was used to track water surface patterns, and ultrasonic sensors were positioned at five different locations along the channel in order to obtain water stage hydrographs. Laboratory measurements were compared against the numerical results obtained through FLOW-3D commercial software, solving the 3D Reynolds-Averaged Navier–Stokes (RANS) with the k-ε turbulence model for closure, and Shallow Water Equations (SWEs). The comparison achieved a reasonable agreement with both numerical models, although the RANS showed in general, as expected, a better performance.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 344
Author(s):  
Le Thi Thu Hien ◽  
Nguyen Van Chien

The aim of this paper was to investigate the ability of some 2D and 3D numerical models to simulate flood waves in the presence of an isolated building or building array in an inundated area. Firstly, the proposed 2D numerical model was based on the finite-volume method (FVM) to solve 2D shallow-water equations (2D-SWEs) on structured mesh. The flux-difference splitting method (FDS) was utilized to obtain an exact mass balance while the Roe scheme was invoked to approximate Riemann problems. Secondly, the 3D commercially available CFD software package was selected, which contained a Flow 3D model with two turbulent models: Reynolds-averaged Navier-Stokes (RANs) with a renormalized group (RNG) and a large-eddy simulation (LES). The numerical results of an impact force on an obstruction due to a dam-break flow showed that a 3D solution was much better than a 2D one. By comparing the 3D numerical force results of an impact force acting on building arrays with the existence experimental data, the influence of velocity-induced force on a dynamic force was quantified by a function of the Froude number and the water depth of the incident wave. Furthermore, we investigated the effect of the initial water stage and dam-break width on the 3D-computed results of the peak value of force intensity.


Author(s):  
Jane McKee Smith ◽  
Spicer Bak ◽  
Tyler Hesser ◽  
Mary A. Bryant ◽  
Chris Massey

An automated Coastal Model Test Bed has been built for the US Army Corps of Engineers Field Research Facility to evaluate coastal numerical models. In October of 2015, the test bed was expanded during a multi-investigator experiment, called BathyDuck, to evaluate two bathymetry sources: traditional survey data and bathymetry generated through the cBathy inversion algorithm using Argus video measurements. Comparisons were made between simulations using the spectral wave model STWAVE with half-hourly cBathy bathymetry and the more temporally sparse surveyed bathymetry. The simulation results using cBathy bathymetry were relatively close to those using the surveyed bathymetry. The largest differences were at the shallowest gauges within 250 m of the coast, where wave model normalized root-mean-square was approximately twice are large using the cBathy bathymetry. The nearshore errors using the cBathy input were greatest during events with wave height greater than 2 m. For this limited application, the Argus cBathy algorithm proved to be a suitable bathymetry input for nearshore wave modeling. cBathy bathymetry was easily incorporated into the modeling test bed and had the advantage of being updated on approximately the same temporal scale as the other model input conditions. cBathy has great potential for modeling applications where traditional surveys are sparse (seasonal or yearly).


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Fu-gang Xu ◽  
Xing-guo Yang ◽  
Jia-wen Zhou ◽  
Ming-hui Hao

Dam breaks of landslide dams are always accompanied by large numbers of casualties, a large loss of property, and negative influences on the downstream ecology and environment. This study uses the Jiadanwan landslide dam, created by the Wenchuan earthquake, as a case study example. Several laboratory experiments are carried out to analyse the dam-break mechanism of the landslide dam. The different factors that impact the dam-break process include upstream flow, the boulder effect, dam size, and channel discharge. The development of the discharge channel and the failure of the landslide dam are monitored by digital video and still cameras. Experimental results show that the upstream inflow and the dam size are the main factors that impact the dam-break process. An excavated discharge channel, especially a trapezoidal discharge channel, has a positive effect on reducing peak flow. The depth of the discharge channel also has a significant impact on the dam-break process. The experimental results are significant for landslide dam management and flood disaster prevention and mitigation.


Author(s):  
Dale Kerper ◽  
Christian M. Appendini ◽  
Henrik Kofoed-Hansen ◽  
Ida Bro̸ker

For the determination maximum flood elevations, a number of components contributing to the total water level need to be considered. For instance, astronomical tide, storm surge, relative changes in mean sea level, wave setup, wave runup and wave splash. In this study, numerical models were used to evaluate under which conditions wave setup penetrates into an idealized inlet. A number of idealized inlet/lagoon configurations were tested. A coupled wave-current model was used to assess the static component of the wave setup. A Boussinesq wave model was used to assess the influence of the dynamic oscillating component of the wave setup. This study demonstrates how numerical modeling tools can be effectively used to assess how wave setup develops depending on a specific inlet configuration.


Author(s):  
Dorin Drignei ◽  
Zissimos Mourelatos ◽  
Zhen Hu

This paper addresses the sensitivity analysis of time-dependent computer models. Often, in practice, we partition the inputs into a subset of inputs relevant to the application studied, and a complement subset of nuisance inputs that are not of interest. We propose sensitivity measures for the relevant inputs of such dynamic computer models. The subset of nuisance inputs is used to create replication-type information to help quantify the uncertainty of sensitivity measures (or indices) for the relevant inputs. The method is first demonstrated on an analytical example. Then we use the proposed method in an application about the safety of restraint systems in light tactical vehicles. The method indicates that chest deflection curves are more sensitive to the addition of pretensioners and load limiters than to the type of seatbelt.


Sign in / Sign up

Export Citation Format

Share Document