scholarly journals Comparison of the Use of Energy Storages and Energy Curtailment as an Addition to the Allocation of Renewable Energy in the Distribution System in Order to Minimize Development Costs

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3746 ◽  
Author(s):  
Mateusz Andrychowicz

This paper presents a comparison of the efficiency of energy storage and energy curtailment as an addition to the allocation of renewable energy in the distribution system in order to minimize development costs using a Mixed Integer-Linear Programming (MILP). Energy sources and energy storages are selected, sized and allocated under operational circumstances such as grid congestions and weather conditions. Loads and power units are modeled by daily consumption and generation profiles respectively, to reflect the intermittent character of renewable generation and consumption of energy. The optimization is carried out for a one-year time horizon using twenty-four representative days. The method is verified on three main simulation scenarios and three sub-scenarios for each of them, allowing for the comparison of the efficiency of each used tool. The main scenarios differ in their share of energy from renewable energy sources (RES) in total consumption. In the sub-scenarios, different tools (RES sizing and allocation, energy storages (ES) sizing and allocation and energy curtailment) are used. The results of this research confirm that energy curtailment is a more efficient additional tool for RES sizing and allocation than energy storages. This method can find practical application for Distribution System Operators in elaborating grid development strategies.

Author(s):  
Mahesh Abdare

Abstract: DC Microgrid is going to be a very important part of the Distribution system soon. The given circumstances have forced us to find how to utilize renewable energy sources in the integration to increase its reliability in our day-to-day life. This paper gives a good idea of the DC Microgrid and various methods being used for the controlling part of it. As day by day cost incurred in renewable energy generation is decreasing, we need to find out significant parts where this kind of DC Microgrid can be utilized to provide electricity in all parts of the country. Keywords: DGUs, ImGs, DMA, OXD, DC Microgrid.


2020 ◽  
Vol 12 (15) ◽  
pp. 6084
Author(s):  
Simona-Vasilica Oprea ◽  
Adela Bâra ◽  
Ștefan Preda ◽  
Osman Bulent Tor

Electricity generation from renewable energy sources (RES) has a common feature, that is, it is fluctuating, available in certain amounts and only for some periods of time. Consuming this electricity when it is available should be a primary goal to enhance operation of the RES-powered generating units which are particularly operating in microgrids. Heavily influenced by weather parameters, RES-powered systems can benefit from implementation of sensors and fuzzy logic systems to dynamically adapt electric loads to the volatility of RES. This study attempts to answer the following question: How to efficiently integrate RES to power systems by means of sustainable energy solutions that involve sensors, fuzzy logic, and categorization of loads? A Smart Adaptive Switching Module (SASM) architecture, which efficiently uses electricity generation of local available RES by gradually switching electric appliances based on weather sensors, power forecast, storage system constraints and other parameters, is proposed. It is demonstrated that, without SASM, the RES generation is supposed to be curtailed in some cases, e.g., when batteries are fully charged, even though the weather conditions are favourable. In such cases, fuzzy rules of SASM securely mitigate curtailment of RES generation by supplying high power non-traditional storage appliances. A numerical case study is performed to demonstrate effectiveness of the proposed SASM architecture for a RES system located in Hulubești (Dâmbovița), Romania.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3364 ◽  
Author(s):  
Francisco García-López ◽  
Manuel Barragán-Villarejo ◽  
Alejandro Marano-Marcolini ◽  
José Maza-Ortega ◽  
José Martínez-Ramos

This paper assesses the behaviour of active distribution networks with high penetration of renewable energy sources when the control is performed in a centralised manner. The control assets are the on-load tap changers of transformers at the primary substation, the reactive power injections of the renewable energy sources, and the active and reactive power exchanged between adjacent feeders when they are interconnected through a DC link. A scaled-down distribution network is used as the testbed to emulate the behaviour of an active distribution system with massive penetration of renewable energy resources. The laboratory testbed involves hardware devices, real-time control, and communication infrastructure. Several key performance indices are adopted to assess the effects of the different control actions on the system’s operation. The experimental results demonstrate that the combination of control actions enables the optimal integration of a massive penetration of renewable energy.


Sign in / Sign up

Export Citation Format

Share Document