scholarly journals Sizing of Lithium-Ion Battery/Supercapacitor Hybrid Energy Storage System for Forklift Vehicle

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4518
Author(s):  
Théophile Paul ◽  
Tedjani Mesbahi ◽  
Sylvain Durand ◽  
Damien Flieller ◽  
Wilfried Uhring

Nowadays, electric vehicles are one of the main topics in the new industrial revolution, called Industry 4.0. The transport and logistic solutions based on E-mobility, such as handling machines, are increasing in factories. Thus, electric forklifts are mostly used because no greenhouse gas is emitted when operating. However, they are usually equipped with lead-acid batteries which present bad performances and long charging time. Therefore, combining high-energy density lithium-ion batteries and high-power density supercapacitors as a hybrid energy storage system results in almost optimal performances and improves battery lifespan. The suggested solution is well suited for forklifts which continuously start, stop, lift up and lower down heavy loads. This paper presents the sizing of a lithium-ion battery/supercapacitor hybrid energy storage system for a forklift vehicle, using the normalized Verein Deutscher Ingenieure (VDI) drive cycle. To evaluate the performance of the lithium-ion battery/supercapacitor hybrid energy storage system, different sizing simulations are carried out. The suggested solution allows us to successfully optimize the system in terms of efficiency, volume and mass, in regard to the battery, supercapacitors technology and the energy management strategy chosen.

Sci ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 3 ◽  
Author(s):  
◽  
◽  
◽  
◽  
◽  
...  

In Electrified Vehicles, the cost, efficiency, and durability of electrified vehicles are dependent on the energy storage system (ESS) components, configuration and its performance. This paper, pursuing a minimal size tactic, describes a methodology for quantitatively and qualitatively investigating the impacts of a full bandwidth load on the ESS in the HEV. However, the methodology can be extended to other electrified vehicles. The full bandwidth load, up to the operating frequency of the electric motor drive (20 kHz), is empirically measured which includes a frequency range beyond the usually covered frequency range by published standard drive cycles (up to 0.5 Hz). The higher frequency band is shown to be more efficiently covered by a Hybrid Energy Storage System (HESS) which in this paper is defined as combination of a high energy density battery, an Ultra-Capacitor (UC), an electrolytic capacitor, and a film capacitor. In this paper, the harmonic and dc currents and voltages are measured through two precision methods and then the results are used to discuss about overall HEV efficiency and durability. More importantly, the impact of the addition of high-band energy storage devices in reduction of power loss during transient events is disclosed through precision measurement based methodology.


Sci ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 26 ◽  
Author(s):  
Masood Shahverdi ◽  
Michael Mazzola ◽  
Matthew Doude ◽  
Quintin Grice ◽  
Jim Gafford ◽  
...  

In Electrified Vehicles, the cost, efficiency, and durability of electrified vehicles are dependent on the energy storage system (ESS) components, configuration and its performance. This paper, pursuing a minimal size tactic, describes a methodology for quantitatively and qualitatively investigating the impacts of a full bandwidth load on the ESS in the HEV. However, the methodology can be extended to other electrified vehicles. The full bandwidth load, up to the operating frequency of the electric motor drive (20 kHz), is empirically measured which includes a frequency range beyond the usually covered frequency range by published standard drive cycles (up to 0.5 Hz). The higher frequency band is shown to be more efficiently covered by a Hybrid Energy Storage System (HESS) which in this paper is defined as combination of a high energy density battery, an Ultra-Capacitor (UC), an electrolytic capacitor, and a film capacitor. In this paper, the harmonic and dc currents and voltages are measured through two precision methods and then the results are used to discuss about overall HEV efficiency and durability. More importantly, the impact of the addition of high-band energy storage devices in reduction of power loss during transient events is disclosed through precision measurement based methodology.


Sign in / Sign up

Export Citation Format

Share Document