scholarly journals Economic Impacts of the Demand Response of Electric Vehicles Considering Battery Degradation

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5771
Author(s):  
Yumiko Iwafune ◽  
Kazuhiko Ogimoto

The increase in the number of electric vehicles (EVs) has led to increased global expectations that the application of this technology may result in the reduction of CO2 emissions through the replacement of conventional petrol vehicles and ensure the flexibility of power systems such as batteries. In this paper, we propose a residential demand response (DR) evaluation model that considers the degradation mechanism of the EV battery and examines the effective battery operation. We adopted the already-proposed NiMnCo battery degradation model to develop an EV DR evaluation model. In this model, the battery operation is optimized to minimize the electricity and degradation costs affected by ambient temperature, battery state of charge (SOC), and depth of discharge. In this study, we evaluated the impact of the relevant parameters on the economics of the DR of EV batteries for 10 all-electric detached houses with photovoltaic system assuming multiple EV driving patterns and battery (dis)charging constraints. The results indicated that the degradation costs are greatly affected by the SOC condition. If a low SOC can be managed with a DR strategy, the total cost can be reduced. This is because the sum of the reduction of purchased cost from the utility and calendar degradation costs are higher than the increase of the cycle degradation cost. In addition, an analysis was conducted considering different driving patterns. The results showed that the cost reduction was highest when a driving pattern was employed in which the mileage was low and the staying at home time was large. When degradation costs are included, the value of optimized charging and discharging operations is more apparent than when degradation costs are not considered.

2019 ◽  
Vol 272 ◽  
pp. 01023
Author(s):  
Chunxuan Hu ◽  
Tianran Li ◽  
Chao Yuan

The basic characteristics of electric vehicles are important basis for studying the behavior of electric vehicles. According to the basic characteristics of electric vehicles, this paper establishes an electric vehicle convergence model and its control strategy with demand-side response. Taking into account the demand for electric vehicles, electric vehicle aggregators and power companies, reducing the cost of control, while reducing the impact on electric vehicles. Based on the real-time state of charge, the conditions of electric vehicle in the network and other factors to build the assessment model of the scheduling potential, and then put forward the demand response indicators of electric vehicles, and give the corresponding aggregation strategy. considering the multiple constraints , such as the cost constraints of electric vehicles participating in grid regulation, the charging requirements of electric vehicle owners, and the battery consumption of electric vehicles, a control strategy model is proposed for electric vehicles participating in demand response of power systems. The simulation test shows that the aggregation strategy can not only meet the travel needs of electric vehicle owners, but also reduce the impact on the electric vehicle caused by frequent switching of charge and discharge status. In addition, it can also reduce the cost of grid regulation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Elias Hartvigsson ◽  
Niklas Jakobsson ◽  
Maria Taljegard ◽  
Mikael Odenberger

Electrification of transportation using electric vehicles has a large potential to reduce transport related emissions but could potentially cause issues in generation and distribution of electricity. This study uses GPS measured driving patterns from conventional gasoline and diesel cars in western Sweden and Seattle, United States, to estimate and analyze expected charging coincidence assuming these driving patterns were the same for electric vehicles. The results show that the electric vehicle charging power demand in western Sweden and Seattle is 50–183% higher compared to studies that were relying on national household travel surveys in Sweden and United States. The after-coincidence charging power demand from GPS measured driving behavior converges at 1.8 kW or lower for Sweden and at 2.1 kW or lower for the United States The results show that nominal charging power has the largest impact on after-coincidence charging power demand, followed by the vehicle’s electricity consumption and lastly the charging location. We also find that the reduction in charging demand, when charging is moved in time, is largest for few vehicles and reduces as the number of vehicles increase. Our results are important when analyzing the impact from large scale introduction of electric vehicles on electricity distribution and generation.


Author(s):  
S.M. Sajed Sadati ◽  
Kristen S. Cetin

Gate electrification provides electricity and preconditioned air to stationary aircraft at airport gates as an alternative to the use of auxiliary power units. This includes a preconditioned air unit (PCA) and a ground power unit (GPU). This study aims to explore the impact of utilizing these units on the electricity demand of airports and analyzes the associated costs for both the cases of purchasing the electricity from a utility following a typical large commercial rate structure, and participating in the wholesale electricity market. The possibility of benefiting from solar energy to supply this electricity demand is also examined. The demand for gate electrification was measured at a gate at Des Moines International Airport in Iowa, U.S.A., and combined with other data including weather conditions and aircraft types to identify significant explanatory variables for electricity demand. This analysis revealed that ambient temperature is the main PCA demand predictor while aircraft type is the main factor driving the GPU demand. A linear regression model was developed to estimate the PCA electricity demand based on the ambient temperature. For the GPU, the typical demand was used based on aircraft type. This analysis shows that gate electrification used across all gates can contribute to up to 87% of the measured peak demand of the airport; the cost of participating in the wholesale market would be 57% less than following the current large commercial rate structure, and the airport can benefit from installing a photovoltaic system if the surplus electricity is utilized.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 114305-114314 ◽  
Author(s):  
Saifullah Shafiq ◽  
Usama Bin Irshad ◽  
Mohammad Al-Muhaini ◽  
Sasa Z. Djokic ◽  
Umer Akram

Sign in / Sign up

Export Citation Format

Share Document