scholarly journals Modelling of the Dynamic Young’s Modulus of a Sedimentary Rock Subjected to Nonstationary Loading

Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6461
Author(s):  
Mikhail Guzev ◽  
Evgenii Riabokon ◽  
Mikhail Turbakov ◽  
Evgenii Kozhevnikov ◽  
Vladimir Poplygin

This paper presents a mathematical model that reflects the nature of the dynamic Young’s modulus of a dry sedimentary rock during nonstationary uniaxial loading. The model is based on an idealized model of a system suggested by Jaeger J.C. A rock sample is considered as a spring with stiffness, the bottom point of which is fixed, while the upper point carries a mass. A sample experiences dynamic load and the rock matrix response. Displacement of the mass from the equilibrium state sets the variation of the sample’s length. Displacement of all the sample’s points goes according to the same law regardless of the point location. The response of a rock to a disturbing nonstationary load is selected based on the combination of conditions of each experiment, such as the load frequency and amplitude and the mass, length, and diameter of a sample. The mathematical model is consistent with experimental data, according to which an increase in load frequency leads to an increase in the dynamic Young’s modulus for each value of the load. The accuracy of the models is evaluated. The relations underlying the model can be used as a basis to describe the Young’s modulus dispersion of sedimentary rocks under the influence of nonstationary loads.

1975 ◽  
Vol 9 (2) ◽  
pp. 286-290
Author(s):  
S. S. Abramchuk ◽  
V. S. Shirokolava ◽  
V. L. Polyakov

2010 ◽  
Vol 62 (11) ◽  
pp. 831-834 ◽  
Author(s):  
Stefano Guicciardi ◽  
Akhilesh Kumar Swarnakar ◽  
Omer Van der Biest ◽  
Diletta Sciti

2010 ◽  
Vol 26-28 ◽  
pp. 936-939
Author(s):  
Li Zhang ◽  
Ying Cheng Hu

In this paper, the poplar LVL was reinforced with multilayer fiberglass mesh. The reinforcing effect of adding position of fiberglass mesh on improving the static MOE was studied. And three different nondestructive testing (NDT) methods, such as the longitudinal transmission method, longitudinal vibration method and flexural vibration method (out-plane and in-plane), were used to test the dynamic properties of the reinforced poplar LVL. The correlation analysis was implemented between the dynamic Young’s modulus and the static MOE of the reinforced poplar LVL. It can be concluded that the three NDT methods are useful for predicting the MOE of reinforced LVL, but the flexural and longitudinal vibration methods had better accuracy to estimate the MOE.


Sign in / Sign up

Export Citation Format

Share Document