scholarly journals High Channel Density Ceramic Microchannel Reactor for Syngas Production

Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6472
Author(s):  
Estelle le Saché ◽  
Panayiotis Tsaousis ◽  
Tomas Ramirez Reina ◽  
Enrique Ruiz-Trejo

Solid oxide fuel cells can operate with carbonaceous fuels, such as syngas, biogas, and methane, using either internal or external reforming, and they represent a more efficient alternative to internal combustion engines. In this work, we explore, for the first time, an alumina membrane containing straight, highly packed (461,289 cpsi), parallel channels of a few micrometers (21 µm) in diameter as a microreformer. As a model reaction to test the performance of this membrane, the dry reforming of methane was carried out using nickel metal and a composite nickel/ceria as catalysts. The samples with intact microchannels were more resistant to carbon deposition than those with a powdered sample, highlighting the deactivation mitigation effect of the microchannel structure. The coke content in the microchannel membrane was one order of magnitude lower than in the powder catalyst. Overall, this work is a proof of concept on the use of composite alumina membrane as microchannel reactors for high temperature reactions.

2018 ◽  
Vol 43 (36) ◽  
pp. 17142-17155 ◽  
Author(s):  
Farah Mesrar ◽  
Mohamed Kacimi ◽  
Leonarda F. Liotta ◽  
F. Puleo ◽  
Mahfoud Ziyad

2020 ◽  
Vol 21 (1) ◽  
pp. 14-19
Author(s):  
Arthur R. Asoyan ◽  
Igor K. Danilov ◽  
Igor A. Asoyan ◽  
Georgy M. Polishchuk

A technical solution has been proposed to reduce the consumption of basic hydrocarbon fuel, to improve the technical, economic and environmental performance of internal combustion engines by affecting the combustion process of the fuel-air mixture with a minimum effective mass fraction of hydrogen additive in the fuel-air mixture. The burning rate of hydrogen-air mixtures is an order of magnitude greater than the burning rate of similar mixtures based on gasoline or diesel fuel, compared with the former, they are favorably distinguished by their greater detonation stability. With minimal additions of hydrogen to the fuel-air charge, its combustion time is significantly reduced, since hydrogen, having previously mixed with a portion of the air entering the cylinder and burning itself, effectively ignites the mixture in its entirety. Issues related to the accumulation of hydrogen on board the car, its storage, explosion safety, etc., significantly inhibit the development of mass production of cars using hydrogen fuel. The described technical solution allows the generation of hydrogen on board the car and without accumulation to use it as an additive to the main fuel in internal combustion engines. The technical result is to reduce the consumption of hydrocarbon fuels (of petroleum origin) and increase the environmental friendliness of the car due to the reduction of the emission of harmful substances in exhaust gases.


2017 ◽  
Vol 212 ◽  
pp. 159-174 ◽  
Author(s):  
Axel Löfberg ◽  
Jesús Guerrero-Caballero ◽  
Tanushree Kane ◽  
Annick Rubbens ◽  
Louise Jalowiecki-Duhamel

MRS Bulletin ◽  
1997 ◽  
Vol 22 (11) ◽  
pp. 69-72 ◽  
Author(s):  
K.F. Kelton ◽  
P.C. Gibbons

Quasicrystals may have important applications as new technological materials. In particular, work in our laboratory has shown that some quasicrystals may be useful as hydrogen-storage materials.Some transition metals have a capacity to store hydrogen to a density exceeding that of liquid hydrogen. Such systems allow for basic investigations of solid-state phenomena such as phase transitions, atomic diffusion, and electronic structure. They may also be critical materials for the future energy economy. The depletion of the world's petroleum reserves and the increased environmental impact of conventional combustion-engine powered automobiles are leading to renewed interest in hydrogen. TiFe hydrides have already been used as storage tanks for stationary nonpolluting hydrogen internal-combustion engines. Nickel metal-hydride batteries are commonly used in a wide range of applications, most notably as power sources for portable electronic devices—particularly computers. The light weight and low cost of titanium-transition-metal alloys offer significant advantages for such applications. Unfortunately they tend to form stable hydrides, which prevents the ready desorption of the stored hydrogen for the intended use.Some titanium/zirconium quasicrystals have a larger capacity for reversible hydrogen storage than do competing crystalline materials. Hydrogen can be loaded from the gas phase at temperatures as low as room temperature and from an electrolytic solution. The hydrogen goes into solution in the quasicrystal structure, often avoiding completely the formation of undesirable crystalline hydride phases. The proven ability to reversibly store variable quantities of hydrogen in a quasicrystal not only points to important areas of application but also opens the door to previously inaccessible information about the structure and dynamics of this novel phase. Selected results illustrating these points appear briefly here.


Sign in / Sign up

Export Citation Format

Share Document