scholarly journals MORED: A Moroccan Buildings’ Electricity Consumption Dataset

Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6737
Author(s):  
Mohamed Aymane Ahajjam ◽  
Daniel Bonilla Licea ◽  
Chaimaa Essayeh ◽  
Mounir Ghogho ◽  
Abdellatif Kobbane

This paper consists of two parts: an overview of existing open datasets of electricity consumption and a description of the Moroccan Buildings’ Electricity Consumption Dataset, a first of its kind, coined as MORED. The new dataset comprises electricity consumption data of various Moroccan premises. Unlike existing datasets, MORED provides three main data components: whole premises (WP) electricity consumption, individual load (IL) ground-truth consumption, and fully labeled IL signatures, from affluent and disadvantaged neighborhoods. The WP consumption data were acquired at low rates (1/5 or 1/10 samples/s) from 12 households; the IL ground-truth data were acquired at similar rates from five households for extended durations; and IL signature data were acquired at high and low rates (50 k and 4 samples/s) from 37 different residential and industrial loads. In addition, the dataset encompasses non-intrusive load monitoring (NILM) metadata.

Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 75
Author(s):  
Benjamin Völker ◽  
Marc Pfeifer ◽  
Philipp M. Scholl ◽  
Bernd Becker

In order to reduce the electricity consumption in our homes, a first step is to make the user aware of it. Raising such awareness, however, demands to pinpoint users of specific appliances that unnecessarily consume electricity. A retrofittable and scalable way to provide appliance-specific consumption is provided by Non-Intrusive Load Monitoring methods. These methods use a single electricity meter to record the aggregated consumption of all appliances and disaggregate it into the consumption of each individual appliance using advanced algorithms usually utilizing machine-learning approaches. Since these approaches are often supervised, labelled ground-truth data need to be collected in advance. Labeling on-phases of devices is already a tedious process, but, if further information about internal device states is required (e.g., intensity of an HVAC), manual post-processing quickly becomes infeasible. We propose a novel data collection and labeling framework for Non-Intrusive Load Monitoring. The framework is comprised of the hardware and software required to record and (semi-automatically) label the data. The hardware setup includes a smart-meter device to record aggregated consumption data and multiple socket meters to record appliance level data. Labeling is performed in a semi-automatic post-processing step guided by a graphical user interface, which reduced the labeling effort by 72% compared to a manual approach. We evaluated our framework and present the FIRED dataset. The dataset features uninterrupted, time synced aggregated, and individual device voltage and current waveforms with distinct state transition labels for a total of 101 days.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5236 ◽  
Author(s):  
Sanket Desai ◽  
Rabei Alhadad ◽  
Abdun Mahmood ◽  
Naveen Chilamkurti ◽  
Seungmin Rho

With the large-scale deployment of smart meters worldwide, research in non-intrusive load monitoring (NILM) has seen a significant rise due to its dual use of real-time monitoring of end-user appliances and user-centric feedback of power consumption usage. NILM is a technique for estimating the state and the power consumption of an individual appliance in a consumer’s premise using a single point of measurement device such as a smart meter. Although there are several existing NILM techniques, there is no meaningful and accurate metric to evaluate these NILM techniques for multi-state devices such as the fridge, heat pump, etc. In this paper, we demonstrate the inadequacy of the existing metrics and propose a new metric that combines both event classification and energy estimation of an operational state to give a more realistic and accurate evaluation of the performance of the existing NILM techniques. In particular, we use unsupervised clustering techniques to identify the operational states of the device from a labeled dataset to compute a penalty threshold for predictions that are too far away from the ground truth. Our work includes experimental evaluation of the state-of-the-art NILM techniques on widely used datasets of power consumption data measured in a real-world environment.


2008 ◽  
Vol 13 (S1) ◽  
pp. 406-411 ◽  
Author(s):  
Mario Berges ◽  
Ethan Goldman ◽  
H. Scott Matthews ◽  
Lucio Soibelman

Author(s):  
Yu Shirai ◽  
Shunichi Hattori ◽  
Yasufumi Takama ◽  
◽  

This paper aims to analyze the lifestyle of residents from household electricity consumption data. Improving QOL (Quality of Life) of elderlies has attracted attention in a super-aging society. It is known that the lifestyle of a person directly affects his / her health and QOL. Therefore, understanding a lifestyle is expected to be useful for providing various support for improving QOL, such as recommending adequate actions and daily habit. As a means for understanding residents’ lifestyle, this paper focuses on household electricity consumption data, which gets to be available with the spread of smart meters. The analysis is conducted by estimating the time of taking essential actions such as wake up and eating. As the target data has no ground truth, this paper also shows the result of an experiment on the detection of the essential actions. The analysis results reveal several findings which could be useful for improving QOL, such as positive correlation between regularity of dinner time and bedtime.


ACTA IMEKO ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 139
Author(s):  
Barbara Cannas ◽  
Sara Carcangiu ◽  
Daniele Carta ◽  
Alessandra Fanni ◽  
Carlo Muscas ◽  
...  

Non-Intrusive Load Monitoring (NILM) allows providing appliance-level electricity consumption information and decomposing the overall power consumption by using simple hardware (one sensor) with a suitable software. This paper presents a low-frequency NILM-based monitoring system suitable for a typical house. The proposed solution is a hybrid event-detection approach including an event-detection algorithm for devices with a finite number of states and an auxiliary algorithm for appliances characterized by complex patterns. The system was developed using data collected at households in Italy and tested also with data from BLUED, a widely used dataset of real-world power consumption data. Results show that the proposed approach works well in detecting and classifying what appliance is working and its consumption in complex household load dataset.


Data ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 127 ◽  
Author(s):  
Lucas Pereira

Datasets are important for researchers to build models and test how these perform, as well as to reproduce research experiments from others. This data paper presents the NILM Performance Evaluation dataset (NILMPEds), which is aimed primarily at research reproducibility in the field of Non-intrusive load monitoring. This initial release of NILMPEds is dedicated to event detection algorithms and is comprised of ground-truth data for four test datasets, the specification of 47,950 event detection models, the power events returned by each model in the four test datasets, and the performance of each individual model according to 31 performance metrics.


2021 ◽  
Vol 13 (12) ◽  
pp. 6546
Author(s):  
Mingzhi Yang ◽  
Yue Liu ◽  
Quanlong Liu

Monitoring electricity consumption in residential buildings is an important way to help reduce energy usage. Nonintrusive load monitoring is a technique to separate the total electrical load of a single household into specific appliance loads. This problem is difficult because we aim to extract the energy consumption of each appliance by only using the total electrical load. Deep transfer learning is expected to solve this problem. This paper proposes a deep neural network model based on an attention mechanism. This model improves the traditional sequence-to-sequence model with a time-embedding layer and an attention layer so that it can be better applied in nonintrusive load monitoring. In particular, the improved model abandons the recurrent neural network structure and shortens the training time, which means it is more appropriate for use in model pretraining with large datasets. To verify the validity of the model, we selected three open datasets and compared them with the current leading model. The results show that transfer learning can effectively improve the prediction ability of the model, and the model proposed in this study has a better performance than the most advanced available model.


2021 ◽  
Vol 13 (10) ◽  
pp. 1966
Author(s):  
Christopher W Smith ◽  
Santosh K Panda ◽  
Uma S Bhatt ◽  
Franz J Meyer ◽  
Anushree Badola ◽  
...  

In recent years, there have been rapid improvements in both remote sensing methods and satellite image availability that have the potential to massively improve burn severity assessments of the Alaskan boreal forest. In this study, we utilized recent pre- and post-fire Sentinel-2 satellite imagery of the 2019 Nugget Creek and Shovel Creek burn scars located in Interior Alaska to both assess burn severity across the burn scars and test the effectiveness of several remote sensing methods for generating accurate map products: Normalized Difference Vegetation Index (NDVI), Normalized Burn Ratio (NBR), and Random Forest (RF) and Support Vector Machine (SVM) supervised classification. We used 52 Composite Burn Index (CBI) plots from the Shovel Creek burn scar and 28 from the Nugget Creek burn scar for training classifiers and product validation. For the Shovel Creek burn scar, the RF and SVM machine learning (ML) classification methods outperformed the traditional spectral indices that use linear regression to separate burn severity classes (RF and SVM accuracy, 83.33%, versus NBR accuracy, 73.08%). However, for the Nugget Creek burn scar, the NDVI product (accuracy: 96%) outperformed the other indices and ML classifiers. In this study, we demonstrated that when sufficient ground truth data is available, the ML classifiers can be very effective for reliable mapping of burn severity in the Alaskan boreal forest. Since the performance of ML classifiers are dependent on the quantity of ground truth data, when sufficient ground truth data is available, the ML classification methods would be better at assessing burn severity, whereas with limited ground truth data the traditional spectral indices would be better suited. We also looked at the relationship between burn severity, fuel type, and topography (aspect and slope) and found that the relationship is site-dependent.


2020 ◽  
Vol 13 (1) ◽  
pp. 26
Author(s):  
Wen-Hao Su ◽  
Jiajing Zhang ◽  
Ce Yang ◽  
Rae Page ◽  
Tamas Szinyei ◽  
...  

In many regions of the world, wheat is vulnerable to severe yield and quality losses from the fungus disease of Fusarium head blight (FHB). The development of resistant cultivars is one means of ameliorating the devastating effects of this disease, but the breeding process requires the evaluation of hundreds of lines each year for reaction to the disease. These field evaluations are laborious, expensive, time-consuming, and are prone to rater error. A phenotyping cart that can quickly capture images of the spikes of wheat lines and their level of FHB infection would greatly benefit wheat breeding programs. In this study, mask region convolutional neural network (Mask-RCNN) allowed for reliable identification of the symptom location and the disease severity of wheat spikes. Within a wheat line planted in the field, color images of individual wheat spikes and their corresponding diseased areas were labeled and segmented into sub-images. Images with annotated spikes and sub-images of individual spikes with labeled diseased areas were used as ground truth data to train Mask-RCNN models for automatic image segmentation of wheat spikes and FHB diseased areas, respectively. The feature pyramid network (FPN) based on ResNet-101 network was used as the backbone of Mask-RCNN for constructing the feature pyramid and extracting features. After generating mask images of wheat spikes from full-size images, Mask-RCNN was performed to predict diseased areas on each individual spike. This protocol enabled the rapid recognition of wheat spikes and diseased areas with the detection rates of 77.76% and 98.81%, respectively. The prediction accuracy of 77.19% was achieved by calculating the ratio of the wheat FHB severity value of prediction over ground truth. This study demonstrates the feasibility of rapidly determining levels of FHB in wheat spikes, which will greatly facilitate the breeding of resistant cultivars.


Sign in / Sign up

Export Citation Format

Share Document