scholarly journals Novel Hybrid Reactive Distillation with Extraction and Distillation Processes for Furfural Production from an Actual Xylose Solution

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1152
Author(s):  
Le Cao Nhien ◽  
Nguyen Van Duc Long ◽  
Moonyong Lee

Furfural is only derived from lignocellulosic biomass and is an important chemical used in the plastics, agrochemical, and pharmaceutical industries. The existing industrial furfural production process, involving reaction and purification steps, suffers from a low yield and intensive energy use. Hence, major improvements are needed to sustainably upgrade the furfural production process. In this study, the conventional furfural process based on a continuous stirred tank reactor and distillation columns was designed and optimized from an actual aqueous xylose solution via a biomass pretreatment step. Subsequently, a reactive distillation (RD) and extraction/distillation (ED) configuration was proposed for the reaction and purification steps, respectively, to improve the process efficiency. RD can remove furfural instantly from the reactive liquid phase and can separate heavy components from the raw furfural stream, while the ED configuration with toluene and butyl chloride used as extracting solvents can effectively separate furfural from a dilute aqueous stream. The results showed that the hybrid RD-ED process using a butyl chloride solvent saves up to 51.8% and 57.4% of the total investment costs and total annual costs, respectively, compared to the conventional process. Furthermore, environmental impacts were evaluated and compared for all structural alternatives.

2005 ◽  
Vol 83 (4) ◽  
pp. 379-400 ◽  
Author(s):  
R. Thery ◽  
X.M. Meyer ◽  
X. Joulia ◽  
M. Meyer

2021 ◽  
Vol 845 (1) ◽  
pp. 012111
Author(s):  
N L Kleymenova ◽  
L I Nazina ◽  
I N Bolgova ◽  
A N Pegina ◽  
O A Orlovseva

Abstract The typical problem of vegetable oil processing is to ensure the consistency of the output quality. The one parameter that mostly affects quality is the presence of wax, which commands control at all stages of the process (refinement, odours removal, freezing). Statistical methods of analysis can be usefully applied to the improvement of vegetable oil processing, as demonstrated by this study. The authors in fact used statistical methods in order to: a) optimize parameters consistency, b) enhance process efficiency, c) improve economic performance and finally, d) assess process stability. The following statistical tools were used in the study: 1) Histograms, 2) Shewhart Charts, 3) Ishikawa Diagrams and, 4) Pareto Chart. A first major finding was that the occurrence of process flaws that would result in product rejection had a 5% probability of happening at all stages of the process. Moreover, the analysis of process stability with maps of average values and ranges leads to the finding that the process itself is statistically unstable. Finally, cause-and-effect relationships of influencing factors (such as the quality of feedstock) were investigated, thus determining the main causes of flaw in the production process. This leads to the definition of corrective actions, the effectiveness of which was then investigated and evaluated.


Sign in / Sign up

Export Citation Format

Share Document