acetate production
Recently Published Documents


TOTAL DOCUMENTS

291
(FIVE YEARS 85)

H-INDEX

41
(FIVE YEARS 6)

2021 ◽  
Vol 10 (1) ◽  
pp. 43
Author(s):  
Hilal Taymaz-Nikerel ◽  
Alvaro R. Lara

Overflow metabolism is a phenomenon extended in nature, ranging from microbial to cancer cells. Accumulation of overflow metabolites pose a challenge for large-scale bioprocesses. Yet, the causes of overflow metabolism are not fully clarified. In this work, the underlying mechanisms, reasons and consequences of overflow metabolism in different organisms have been summarized. The reported effect of aerobic expression of Vitreoscilla haemoglobin (VHb) in different organisms are revised. The use of VHb to reduce overflow metabolism is proposed and studied through flux balance analysis in E. coli at a fixed maximum substrate and oxygen uptake rates. Simulations showed that the presence of VHb increases the growth rate, while decreasing acetate production, in line with the experimental measurements. Therefore, aerobic VHb expression is considered a potential tool to reduce overflow metabolism in cells.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2962
Author(s):  
Lin Zhu ◽  
Zhaozhi Hou ◽  
Xinyu Hu ◽  
Xu Liu ◽  
Tian Dai ◽  
...  

Inner Mongolian cheese is a traditional dairy product in China. It is produced without rennet, using naturally acidified milk that is simmered to achieve whey separation. In order to analyse the impact of simmering on the microbial community structure, high-throughput sequencing was performed to obtain bacterial 16S rRNA sequences from cheeses from the Ordos (ES), Ulanqab (WS), Horqin (KS) and Xilingol (XS) grasslands of Inner Mongolia. The relative abundance of an unexpected microorganism, Thermus thermophilus, ranged from 2% to 9%, which meant that its dominance was second only to that of lactic acid bacteria (LABs). Genome sequencing and fermentation validation were performed in T. thermophilus N-1 isolated from the Ordos, and it was determined that T. thermophilus N-1 could ingest and metabolise lactose in milk to produce lactate during the simmering process. T. thermophilus N-1 could also produce acetate, propionate, citrate and other organic acids through a unique acetate production pathway and a complete propionate production pathway and TCA cycle, which may affect texture and flavour development in Inner Mongolian cheese. Simultaneously, the large amount of citrate produced by T. thermophilus N-1 provides a necessary carbon source for continuous fermentation by LABs after the simmering step. Therefore, T. thermophilus N-1 contributes to cheese fermentation as a predominant, thermophilic, assistant starter microorganism unique to Chinese Inner Mongolian cheese.


Author(s):  
Katja Schlatterer ◽  
Andreas Peschel ◽  
Dorothee Kretschmer

The human innate immune system is equipped with multiple mechanisms to detect microbe-associated molecular patterns (MAMPs) to fight bacterial infections. The metabolite short-chain fatty acids (SCFAs) acetate, propionate and butyrate are released by multiple bacteria or are food ingredients. SCFA production, especially acetate production, is usually essential for bacteria, and knockout of pathways involved in acetate production strongly impairs bacterial fitness. Because host organisms use SCFAs as MAMPs and alter immune reactions in response to SCFAs, interventions that modulate SCFA levels can be a new strategy for infection control. The interaction between SCFAs and host cells has been primarily investigated in the intestinal lumen because of the high local levels of SCFAs released by bacterial microbiome members. However, members of not only the intestinal microbiome but also the skin microbiome produce SCFAs, which are known ligands of the seven-transmembrane G-protein-coupled receptor FFAR2. In addition to enterocytes, FFAR2 is expressed on other human cell types, including leukocytes, especially neutrophils. This finding is in line with other research that determined that targeted activation of FFAR2 diminishes susceptibility toward various types of infection by bacteria such as Klebsiella pneumonia, Citrobacter rodentium, and Staphylococcus aureus but also by viruses such as respiratory syncytial and influenza viruses. Thus, our immune system appears to be able to use FFAR2-dependent detection of SCFAs for perceiving and even averting severe infections. We summarize recent advances in understanding the role of SCFAs and FFAR2 in various infection types and propose the manipulation of this receptor as an additional therapeutic strategy to fight infections.


2021 ◽  
Author(s):  
Victoria Horrocks ◽  
Charlotte K Hind ◽  
Matthew E Wand ◽  
Joel Chan ◽  
Jade Caitlin Hopkins ◽  
...  

Bacterial vaginosis (BV) is a dysbiosis of the vaginal microbiome, characterised by low levels of lactobacilli and overgrowth of a diverse group of bacteria, and associated with higher risk of a variety of infections, surgical complications, cancer and spontaneous preterm birth (PTB). Despite the lack of a consistently applicable aetiology, Prevotella spp. are often associated with both BV and PTB and P. bivia has known symbiotic relationships with both Peptostreptococcus anaerobius and Gardnerella vaginalis. Higher risk of PTB can also be predicted by a composite of metabolites linked to bacterial metabolism but their specific bacterial source remains poorly understood. Here we characterise diversity of metabolic strategies among BV associated bacteria and lactobacilli and the symbiotic metabolic relationships between P. bivia and its partners and show how these influence the availability of metabolites associated with BV/PTB and/or pro- or anti-inflammatory immune responses. We confirm a commensal relationship between Pe. anaerobius and P. bivia, refining its mechanism; P. bivia supplies tyrosine, phenylalanine, methionine, uracil and proline, the last of which leads to a substantial increase in overall acetate production. In contrast, our data indicate the relationship between P. bivia and G. vaginalis strains, with sequence variant G2, is mutualistic with outcome dependent on the metabolic strategy of the G. vaginalis strain. Seven G. vaginalis strains could be separated according to whether they performed mixed acid fermentation (MAF) or bifid shunt (BS). In co-culture, P. bivia supplies all G. vaginalis strains with uracil and received substantial amounts of asparagine in return. Acetate production, which is lower in BS strains, then matched that of MAF strains while production of aspartate increased for the latter. Taken together, our data show how knowledge of inter- and intra-species metabolic diversity and the effects of symbiosis may refine our under-standing of the mechanism and approach to risk prediction in BV and/or PTB.


2021 ◽  
Author(s):  
Magdalena M Felczak ◽  
Michaela A TerAvest

Zymomonas mobilis is a promising bacterial host for biofuel production but further improvement has been hindered because some aspects of its metabolism remain poorly understood. For example, one of the main byproducts generated by Z. mobilis is acetate but the pathway for acetate production is unknown. Acetaldehyde oxidation has been proposed as the major source of acetate and an acetaldehyde dehydrogenase was previously isolated from Z. mobilis via activity guided fractionation, but the corresponding gene has never been identified. We determined that the locus ZMO1754 (also known as ZMO_RS07890) encodes an NADP+-dependent acetaldehyde dehydrogenase that is responsible for acetate production by Z. mobilis. Deletion of this gene from the chromosome resulted in a growth defect in oxic conditions, suggesting that acetaldehyde detoxification is an important role of acetaldehyde dehydrogenase. The deletion strain also exhibited a near complete abolition of acetate production, both in typical laboratory conditions and during lignocellulosic hydrolysate fermentation. Our results show that ZMO1754 encodes the major acetaldehyde dehydrogenase in Z. mobilis and we therefore rename the gene aldB based on functional similarity to the Escherichia coli acetaldehyde dehydrogenase.


Fuel ◽  
2021 ◽  
pp. 122408
Author(s):  
Wonho Jung ◽  
Seulah Lee ◽  
Hyeona Kim ◽  
Woo-Jae Kim ◽  
Jinwon Lee

Sign in / Sign up

Export Citation Format

Share Document