scholarly journals Numerical Study of Fluid Flow and Heat Transfer Characteristics in a Cone-Column Combined Heat Sink

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1605
Author(s):  
Wei Zheng ◽  
Jianjun Sun ◽  
Chenbo Ma ◽  
Qiuping Yu ◽  
Yuyan Zhang ◽  
...  

Temperature has a great influence on the normal operation and service life of high-power electronic components. To cope with the increasingly severe heat problems in integrated circuits, an enhanced heat transfer factor E is introduced to evaluate the comprehensive heat transfer performance of microchannel heat sinks (MCHS). The computational fluid dynamics (CFD) software was used to numerically study the fluid flow and heat transfer characteristics in the cone-column combined heat sink. The research results obtained the velocity field and pressure field distribution of the heat sink structure in the range of 100 ≤ Re ≤ 700. When Re changes, the change law of pressure drop ΔP, friction factor f, average Nussel number Nuave, average substrate temperature T, and enhanced heat transfer factor E, are compared with the circular MCHS. The results show that the uniform arrangement of the cones inside the cone-column combined heat sink can change the flow state of the cooling medium in the microchannel and enhance the heat transfer. In the range of 100 ≤ Re ≤ 700, the base temperature of the cone-column combined heat sink is always lower than the base temperature of the circular MCHS, and the average Nusselt number Nuave is as high as 2.13 times that of the circular microchannel. The enhanced heat factor E is 1.75 times that of the circular MCHS, indicating that the comprehensive heat transfer performance of the cone-column combined heat sink is significantly better than that of the circular microchannel.

Author(s):  
Huanling Liu ◽  
Bin Zhang

Abstract In this paper, we propose a new type of DL-MCHS to improve the substrate temperature uniformity of the microchannel heat sink, and conduct the optimization of the New DL-MCHS. The heat transfer and friction characteristics of the novel DL-MCHS are studied by numerical simulation. We compare the heat transfer performance the new DL-MCHS with the traditional TDL-MCHS (the DL-MCHS with truncated top channels λ = 0.38). The results prove the effectiveness of the improved design by FLUENT simulation. When the inlet velocity is kept constant and coolant is water, the heat transfer performance of the New DL-MCHS is higher than that of TDL-MCHS leading to an increase of the temperature uniformity. In order to achieving the best overall heat transfer performance, an optimization of New DL-MCHS is performed by GA (genetic algorithm).


Author(s):  
D. G. Walker ◽  
J. L. Davidson ◽  
P. G. Taylor ◽  
K. L. Soh ◽  
Bruce Rogers

The heat transfer characteristics of a transformer using both standard mineral oil and nanodiamond oil was investigated numerically and compared to experimental measurements. The results of the model agree well with the standard oil measurements and with theoretical convective flows from the literature. However, the simulations could not predict the magnitude of the temperature variation in the nanodiamond oil, although the appropriate trend was observed. Because properties of the nanodiamond transformer oil are not well known, good agreement is not expected. Nevertheless, nanodiamond in transformer oil shows enhanced heat transfer performance over standard transformer oil.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Longbin Yang ◽  
Huaizhi Han ◽  
Yanjun Li ◽  
Xiaoming Li

This work presents a mathematical model for simulating the swirling flow in an outward convex corrugated tube with twisted-tape insert (CT). The synergistic effect on the flow, heat transfer, and friction loss behaviors between the surface-based and fluid-based enhancements is numerically investigated. Renormalized group (RNG) k-ε turbulence model applied in our paper is verified by comparing with experimental results investigated by Manglik and Bergles. Comparisons of the CT and smooth tube with twisted-tape insert (ST) plots are confirmed to investigate the performance differences between them. When comparing the performance of the CT against the ST, the maximum ratio of Nusselt number (Nuc/Nus), ratio of friction factor (f/fs), and overall heat transfer performance (η) values realized in the CT are 1.36, 1.53, and 1.15 times higher, respectively, than the maximum values for those same variables in the ST.


2021 ◽  
pp. 167-167
Author(s):  
Hong Yuan ◽  
Zhao Wang ◽  
Quan Gao ◽  
Ting Fu

In this study, the flow and heat transfer characteristics of the forced pulsating Al2O3/water nanofluid were numerically studied. The pulsating excitation of the nanofluid is provided by the Helmhertz self-excited oscillating cavity. The large eddy simulation method is used to solve the equation, and the local Nusselt number and heat transfer performance index are used to analyze the heat transfer characteristics of the nanofluid in the self-excited oscillation heat exchange tube. In addition, the effect of different downstream tube diameters on heat transfer enhancement is discussed. The research results show that the existence of the countercurrent vortex can increase the disturbance of the near-wall fluid, thereby improving the mixing degree of the near-wall fluid and the central mainstream. As the countercurrent vortex migrates downstream, pulse enhanced heat transfer is realized. Furthermore, it was also found that when the downstream tube diameter d2=1.8d1, the periodic effect of the local Nusselt number of the wall is the best and the heat transfer performance index has the most stable pulsation effect within a pulsation cycle. But when d2=2.0d1, the change curve of heat transfer performance index in a pulsating period is the highest, the maximum value is 3.95.


Author(s):  
Long Wei ◽  
Zixuan Song ◽  
Tao Ren ◽  
Yun Liu

Abstract With the increasing power requirements of electronic devices, high heat flux will cause serious damage to the devices. Based on the basic theory of micro-nano heat transfer, the series and topological microchannel heat sink models are established. The flow field characteristics and temperature distribution in the heat sink are analyzed by numerical calculation. The effects of channel structure on temperature, pressure drop, the Nusselt number and enhanced heat transfer factor are compared, and the micro-mechanism of heat transfer enhancement in microchannels is clarified. It is found that the Nusselt number of the flow field can be significantly increased by adding the triangular groove in the microchannel, and the enhanced heat transfer factor in the channel can be greatly improved by the topological structure. Further analysis of the factors such as angle a, diameter ratios γ and topological structures of the triangular groove shows that:When α = 70°,the Nusselt number of the flow field is 3.1 times of that of the straight channel, and the enhanced heat transfer factor is 2.7 times of that of it; compared with the straight channel, the comprehensive heat transfer performance of the microchannel with γ = 1/2 is improved by 31%; when using T.Tr.N. topology, the convective heat transfer of the microchannel is 2.6 times of that of the straight channel and the comprehensive heat transfer performance is increased by 5.9 times.


Author(s):  
Xinjun Wang ◽  
Feng Zhang ◽  
Daren Zheng ◽  
Jun Li

The flow and heat transfer characteristics of mist/air cooling in the rotating ribbed two-pass rectangular channel are numerically investigated using the CFD software ANSYS-CFX. In this article, a comparison in heat transfer performance between the mist/air cooling and the air-only cooling is performed. Additionally, the effect of the initial mist diameter, temperature, velocity and the channel rotation speed on the mist/air cooling performance is analysed. The results show that the droplet flow distance and Nusselt number of the mist/air cooling increase as the initial mist temperature decreases. In addition, as the initial mist diameter decreases, the diameter of mist on the whole channel decreases, resulting in the higher heat transfer, whilst the mist concentration also decreases, leading to the lower heat transfer. Therefore, there is an optimal initial mist diameter which makes the heat transfer performance best. Nevertheless, the droplet movement and heat transfer performance of mist/air cooling are nearly insensitive to the initial mist velocity. It is also noted that the Coriolis force increases with the channel rotation speed, causing the flow deflection becomes more obvious. Consequently, as the channel rotation speed increases, in the first passage the averaged Nusselt number on the trailing wall increases, and that on the leading wall decreases, while the trend in the second passage is reversed.


Energies ◽  
2018 ◽  
Vol 11 (4) ◽  
pp. 937 ◽  
Author(s):  
Shiyang Li ◽  
Lang Zhou ◽  
Jian Yang ◽  
Qiuwang Wang

Packed beds are widely used in catalytic reactors or nuclear reactors. Reducing the pressure drop and improving the heat transfer performance of a packed bed is a common research aim. The dimpled structure has a complex influence on the flow and heat transfer characteristics. In the present study, the flow and heat transfer characteristics in structured packed beds with smooth or dimpled spheres are numerically investigated, where two different low channel to particle diameter ratios (N = 1.00 and N = 1.15) are considered. The pressure drop and the Nusselt number are obtained. The results show that, for N = 1.00, compared with the structured packed bed with smooth spheres, the structured packed bed with dimpled spheres has a lower pressure drop and little higher Nusselt number at 1500 < ReH < 14,000, exhibiting an improved overall heat transfer performance. However, for N = 1.15, the structured packed bed with dimpled spheres shows a much higher pressure drop, which dominantly affects the overall heat transfer performance, causing it to be weaker. Comparing the different channel to particle diameter ratios, we find that different configurations can result in: (i) completely different drag reduction effect; and (ii) relatively less influence on heat transfer enhancement.


Sign in / Sign up

Export Citation Format

Share Document