scholarly journals Low-Rank Coal Supported Ni Catalysts for CO2 Methanation

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2040
Author(s):  
Soohyun Kim ◽  
Yunxia Yang ◽  
Renata Lippi ◽  
Hokyung Choi ◽  
Sangdo Kim ◽  
...  

As renewable energy source integration increases, P2G technology that can store surplus renewable power as methane is expected to expand. The development of a CO2 methanation catalyst, one of the core processes of the P2G concept, is being actively conducted. In this work, low-rank coal (LRC) was used as a catalyst support for CO2 methanation, as it can potentially enhance the diffusion and adsorption behavior by easily controlling the pore structure and composition. It can also improve the process efficiency owing to its simplicity (no pre-reduction step) and high thermal conductivity, compared to conventional metal oxide-supported catalysts. A screening of single metals (Ni, Co, Ru, Rh, and Pd) on LRC was performed, which showed that Ni was the most active. When Ni on the LRC catalyst was doped with a promoter (Ce and Mg), the CO2 conversion percentage increased by >10% compared to that of the single Ni catalyst. When the CO2 methanation activity was compared at 250–500 °C, the Ce-doped Ni/Eco and Mg-doped Ni/Eco catalysts showed similar or better activity than the commercial metal oxide-supported catalyst. In addition, the catalytic performance remained stable even after the test for an extended time (~200 h). The results of XRD, TEM, and TPR showed that highly efficient LRC-based CO2 methanation catalysts can be made when the metal dispersion and composition are modified.

Author(s):  
Djamila Sellam ◽  
Kahina Ikkour ◽  
Sadia Dekkar ◽  
Hassiba Messaoudi ◽  
Taous Belaid ◽  
...  

The study presents the dry reforming of methane using natural Kaolin silica as catalyst support. The silica-supported LaNiO3 perovskite catalysts (20LaNiO3/SiO2 and 40LaNiO3/SiO2) and bulk LaNiO3 catalyst were synthesized by auto-combustion method. The resulting catalysts were characterized by X-ray diffraction (XRD), N2 adsorption - desorption isotherm measurement,  scanning electron microscopy (SEM) and temperature-programmed reduction (TPR). After reduction at 700 °C, they were used as catalysts for the reaction of dry reforming of methane into synthesis gas at atmospheric pressure at 800 °C. The reduced 40LaNiO3/SiO2 exhibited high catalytic activity. This result was attributed to the small Ni metallic particles obtained from the reduced perovskite highly dispersed on the support and the good reducibility. The increase of reduction temperature at 800 °C resulted in a further enhancement of the catalytic performance of 40LaNiO3/SiO2 catalyst. Copyright © 2019 BCREC Group. All rights reserved 


2017 ◽  
Vol 733 ◽  
pp. 12-16
Author(s):  
Mukhamad Nurhadi

One of the coal combustion ashes is coal bottom ash. Low rank coal bottom ash can act as TiO2 catalyst’s support which was calcined at varying temperature, has been created. The low rank coal bottom ash model was collected from low rank coal which burned in muffle furnace at 800 °C for 2 h. Subsequently, the low rank coal bottom ash was impregnated with titanium (IV) isopropoxide (Ti (PrO)4) 500 μmol, and then calcined at variation temperature of 300, 400, 500, 600 and 700 °C. The modified physiochemical property of catalysts were determined UV-vis spectroscopy, N2 adsorption-desorption and hydrophobicity test. The performances of the catalysts were tested for styrene oxidation with H2O2 aqueous as oxidant. It is found that the low rank coal bottom ash was as good catalyst support, whereby TiO2 supported low rank coal bottom ash which calcined at 400 °C possessed the best catalytic activity with styrene conversion 45% and selectivity 87%.


2021 ◽  
Vol 75 ◽  
Author(s):  
Chromium Catalysts ◽  
Mzamo L. Shozi ◽  
Xolelwa Zulu ◽  
Holger B. Friedrich

ABSTRACT Chromium(III) complexes with sulphur, nitrogen and phosphorus tridentate ligands were synthesized and characterized. These complexes were supported on SiO2 and characterized by BET surface area measurements, XRF, SEM-EDX and FTIR. The complexes were tested for activity and selectivity in the trimerization of ethylene. The substituent's effect and influence on the sulphur on the supported catalysts were studied using the ethyl and the decyl substituted catalysts. The influence of temperature on catalytic performance was evaluated using the PPP supported system. The most active supported catalyst, the decyl substituted SNS catalyst, showed good activity of up to 19 500 g/g Cr h-1 and selectivity of 97.3 % to C6 products (98.2 % 1-hexene). This activity and selectivity were comparable to the homogeneous counterpart's performance that achieved 22 000 g/g Cr h-1 and 98.2 % C6 products (96.7 % 1-hexene), which surpassed the ethyl substituted catalyst, which was not supported, under the same reaction conditions. The supported PPP catalyst activities showed it was sensitive to higher temperatures, but this depends on the supporting technique. Keywords: Ethylene trimerization, sulfanyl ligands, phosphine ligands, supported catalysts.


2018 ◽  
Author(s):  
Jayeeta Chakraborty ◽  
◽  
Robert B. Finkelman ◽  
William H. Orem ◽  
Matthew S. Varonka ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 239
Author(s):  
Wei Wang ◽  
Long Liang ◽  
Yaoli Peng ◽  
Maria Holuszko

Micro-Fourier transform infrared (micro-FTIR) spectroscopy was used to correlate the surface chemistry of low rank coal with hydrophobicity. Six square areas without mineral impurities on low rank coal surfaces were selected as testing areas. A specially-designed methodology was applied to conduct micro-FTIR measurements and contact angle tests on the same testing area. A series of semi-quantitative functional group ratios derived from micro-FTIR spectra were correlated with contact angles, and the determination coefficients of linear regression were calculated and compared in order to identify the structure of the functional group ratios. Finally, two semi-quantitative ratios composed of aliphatic carbon hydrogen, aromatic carbon hydrogen and two different types of carbonyl groups were proposed as indicators of low rank coal hydrophobicity. This work provided a rapid way to predict low rank coal hydrophobicity through its functional group composition and helped us understand the hydrophobicity heterogeneity of low rank coal from the perspective of its surface chemistry.


Energy ◽  
2021 ◽  
pp. 121505
Author(s):  
Muflih A. Adnan ◽  
Arif Hidayat ◽  
Mohammad M. Hossain ◽  
Oki Muraza
Keyword(s):  
Low Rank ◽  

Sign in / Sign up

Export Citation Format

Share Document