South African Journal of Chemistry
Latest Publications


TOTAL DOCUMENTS

192
(FIVE YEARS 76)

H-INDEX

9
(FIVE YEARS 3)

Published By Academy Of Science Of South Africa

0379-4350, 0379-4350

2021 ◽  
Vol 74 ◽  
Author(s):  
M. Nyepetsi ◽  
F. Mbaiwa ◽  
O.A. Oyetunji ◽  
N.Y. Dzade ◽  
N.H. de Leeuw

ABSTRACT Biodiesel has emerged as a promising alternative fuel to replace dwindling fossil-based resources, particularly in view of its added environmental merit of reducing additional air pollution. Its specific attraction stems from the similarity of its physical properties to fossil fuel-derived diesel. Although the production of biodiesel is a relatively straightforward process, reaction progress monitoring and product analysis require costly specialist equipment, such as gas chromatography and mass spectrome-try. In this study, we investigate the use of pH in monitoring the progress of carbonate-catalyzed transesterification reactions. Specifically, we focus on potassium and sodium carbonates and sunflower oil. Our results are consistent with the results obtained by other studies using different methods of monitoring. To test the generality of the method, pH measurements were also used to monitor the progress of the potassium carbonate transesterification reaction in the presence of added water, glycerol and gamma-valerolactone (GVL). The obtained results are as expected, with a limited amount of water increasing the trans-esterification rate; glycerol slowing the reaction slightly in accord with Le Chatellier's principles; and GVL increasing the rate due to co-solvent effects. Atomic-level insights into the adsorption mechanism of methanol and water on the (001) surfaces of Na2CO3 and K2CO3 catalysts are provided by first-principles DFT calculations, which explain the increase in transesterification reaction rate upon the addition of water. Keywords: Transesterification, pH monitoring, biodiesel , Density Functional Theory ( DFT), co-solvent.


2021 ◽  
Vol 75 ◽  
Author(s):  
Milan Mitic ◽  
Sonja Jankovic ◽  
Snezana Mitic ◽  
Gordana Kocic ◽  
Pavle Maskovic ◽  
...  

2021 ◽  
Vol 75 ◽  
Author(s):  
Safa Ben Amara ◽  
Thorsten Koslowski ◽  
Ali Zaidi

ABSTRACT We investigate the rich stereochemistry of cocaine and its diastereoisomers from a theoretical perspective using density functional theory. The relative stability of the eight considered isomers is discussed, and a comparison of the corresponding internal coordinates is given. Our results reveal that the S-pseudococaine isomer is the most stable conformation, whereas the natural occurring isomer (R-cocaine) lies higher in energy. The different isomers' chemical reactivity is discussed based on the calculation of the hardness, softness, electrophilicity and dipole moment. It was found that the dipole moment varies over a broad range from 0.65 to 4.60 D, whereas the other properties are slightly modified. The solvent effect on the energy stability of the cocaine isomers was studied by considering chloroform, dimethyl-sulfoxide (DMSO) and water as implicit solvents. Our calculations show that the different isomers' energy order and their energy gaps are slightly modified due to solvent effects. However, in all cases, the S-pseudococaine remains the most stable isomer. However, the dipole moment and the chemical reactivity of the cocaine isomers increase with the solvent polarity. Keywords: Cocaine isomers,DFT, stability, solvent effect, chemical reactivity.


2021 ◽  
Vol 75 ◽  
Author(s):  
Janani Loum ◽  
Robert Byamukama ◽  
P.A.G. Wanyama

ABSTRACT The kinetics and adsorption isotherms of the extremely slow traditional natural exhaust dyeing that takes many hours or days have been studied purposely to find means of improving the process. The dyeing of cotton and silk fabrics using dye extract of M. lucida at 50 °C were elucidated with graphs to predict the reaction orders and identify the appropriate adsorption isotherm model(s). Since the dye is UV active, changes in UV absorbance were used in place of changes in concentrations. The simultaneous and post mordanting methods followed pseudo-second-order reactions, hence chemisorption. However, mordant application to the dyed fabrics during post mordant followed a pseudo-first-order model, largely physisorption. Dyeing has followed Langmuir and Freundlich isotherm models with linear correlation r2 ranging between 1 and 0.998. From the Freundlich model and values of Langmuir constant RL (0.9307 to 1.0), the process is homogeneous, forming a favourable and linear monolayer. Accordingly, the dyeing speed can be improved by increasing the concentration of dye liquor. Additionally, according to the Freundlich model, higher dye intensity on fabrics is recorded in post mordanting. Keywords: adsorption isotherms, equilibrium, exhaust dyeing, mordant, rate law


2021 ◽  
Vol 74 ◽  
Author(s):  
Susanne G.E.T. Escher ◽  
Helen D. Duncan ◽  
Alexey A. Sokol ◽  
Scott M. Woodley

ABSTRACT A systematic DFT study is performed on (MgO)B, (CaO)n, (SrO)n, and (BaO)n clusters with 6 < n < 50, and which display a cuboid 2X2X2 atomic motif seen in the bulk, rock-salt, configuration. The stability and energy progression of these clusters are used to predict the energies of infinitely long nanorods, or nanowires, slabs, and the bulk global minimum energy. Keywords: Alkaline earth metal oxides, nanoclusters, nanorods, DFT.


2021 ◽  
Vol 74 ◽  
Author(s):  
Kyle Meerholz ◽  
David Santos-Carballal ◽  
Umberto Terranova ◽  
Anzel Falch ◽  
Cornelia G.C.E. van Sittert ◽  
...  

ABSTRACT In this study, we have developed solid-state models of platinum and palladium bimetallic catalysts, Pt3Pd2 and Pt2Pd3, which are rapidly thermally annealed at 800 °C. These models were constructed by determining all the unique atomic configurations in a 2x2x1 supercell, using the program Site-Occupation Disorder (SOD), and optimized with the General Utility Lattice Program (GULP) using Sutton-Chen interatomic potentials. Each catalyst had 101 unique bulk models that were developed into surface models, which were constructed using the two-region surface technique before the surface energies were determined. The planes and compositions with lowest surface energies were chosen as the representative models for the surface structure of the bimetallic catalysts. These representative models will now be used in a computational study of the HyS process for the production of hydrogen. Keywords: HyS process, platinum, palladium, solid-state, catalyst, Site-Occupation Disorder.


2021 ◽  
Vol 75 ◽  
Author(s):  
Paul Myburgh ◽  
Gerdus Kemp ◽  
Patricia Forbes

ABSTRACT A molecularly imprinted solid-phase extraction (MISPE) procedure was developed for the GC-MS analysis of four high priority pesticides (atrazine, terbuthylazine, acetochlor and alachlor) in a cannabis bud sample matrix. The study demonstrated that the synthesised polymer had a high affinity and good selectivity for either chloroacetamide or triazine classes of pesticide used as a template molecule during the molecularly imprinted polymerisation reaction. The MISPE procedure was optimised in terms of loading, washing and elution fractions utilising a range of aqueous methanol solutions for optimal recovery and minimal matrix interferences. The optimal wash fraction was 20% (v/v) methanol in an aqueous solution, whilst 70% (v/v) was used for the elution fraction. The selectivity, accuracy and recovery of the MISPEs were verified using a synthesised non-imprinted polymer and a commercial C18 cartridge as reference sorbents in comparative experiments. Approximately 3 g of the cannabis bud sample was spiked at a 0.05 mg/kg maximum residue limit (MRL) concentration. The recovery of the four selected pesticides extracted from the spiked samples ranged between 76.4-85.0% when utilising the optimised MISPE methods, compared to 91.6-96.9% for the C18 SPE. However, the use of the MISPE resulted in enhanced selectivity, as evidenced by GC-MS analysis, due to the extraction of less matrix interferences. Therefore, it can be concluded that the MISPE is a viable pre-treatment method for selective pesticide analysis in cannabis flowers using GC-MS when selectivity is valued for the extraction of target pesticides from a complex sample matrix. Keywords: molecularly imprinted polymer; solid-phase extraction; Cannabis; pesticides; atrazine; terbuthylazine; acetochlor; alachlor


2021 ◽  
Vol 74 ◽  
Author(s):  
Kemeridge T. Malatji ◽  
David Santos-Carballal ◽  
Umberto Terranova ◽  
Phuti E. Ngoepe ◽  
Nora H. de Leeuw

ABSTRACT LiMn2O4 spinel is a promising cathode material for secondary lithium-ion batteries. Despite showing a high average voltage of lithium intercalation, the material is structurally unstable, undergoing lowering of the crystal symmetry due to Jahn-Teller distortion of the six-fold Mn3+ cations. Although Ni has been proposed as a suitable substitutional dopant to improve the structural stability of LiMn2O4 and enhance the average lithium intercalation voltage, the thermodynamics of the Ni incorporation and its effect on the electrochemical properties of this spinel material are not yet known. In this work, we have employed density functional theory calculations with a Hubbard Hamiltonian (DFT+u) to investigate the thermodynamics of cation mixing in the Li(Mn1_xNix)2O4 solid solution. Our results suggest LiMn1.5Ni0.5O4 is the most stable composition from room temperature up to at least 1000 K, in agreement with experiments. We also found that the configurational entropy is much lower than the maximum entropy at 1000 K, indicating that higher temperatures are required to reach a fully disordered solid solution. A maximum average lithium intercalation voltage of 4.8 eV was calculated for the LiMn1.5Ni0.5O4 composition, which is very close to the experimental value. The temperature was found to have a negligible effect on the Li intercalation voltage of the most stable composition. The findings reported here support the application of LiMn1.5Ni0.5O4 as a suitable cathode material for lithium-ion batteries, with a highly stable voltage of intercalation under a wide range of temperatures. Keywords: Spinel, equilibrium concentration, mixing thermodynamics, solid-state chemistry and lithium voltage of intercalation.


2021 ◽  
Vol 74 ◽  
Author(s):  
Oluwasegun E. Olaoye ◽  
Olayinka Oyetunji ◽  
Banothile C.E. Makhubela ◽  
Apollinaire Muyaneza ◽  
Gopendra Kumar ◽  
...  

ABSTRACT We have prepared several pyrazolyl palladium and nickel complexes ([(L1)PdCl2](1), [(L2) PdCl2](2), [(L3) PdCl2](3), [(L1) NiBr2](4), [(L2) NiBr2](5) and [(L3) NiBr2](6)) by reacting 3,5-dimethyMH-pyrazole (L1), 3,5-di-ferf-butyl-1ZÏ-pyrazole (L2) and 5-ferrocenyl-1Zf-pyrazole(L3) with [PdCl2(NCMe)2] or [NiBr2(DME)] to afford mononuclear palladium and nickel complexes, respectively. These complexes were then investigated as pre-catalysts in the hydrogenation of 2,4-hexadienoic acid (sorbic acid). The active catalysts from these complexes demonstrate significant activities under mild experimental conditions. Additionally, the active catalysts show that the hydrogenation of sorbic acid proceeds in a sequential manner, where the less hindered C=C bond (4-hexenoic acid) is preferentially reduced over the more hindered C=C bond (2-hexenoic acid). Keywords: Pyrazolyl catalysts, sorbic acid, hydrogenation, selectivity.


Sign in / Sign up

Export Citation Format

Share Document