scholarly journals Moving Up the Electrification Ladder in Off-Grid Settlements with Rooftop Solar Microgrids

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3467
Author(s):  
Isabelo Rabuya ◽  
Melissa Libres ◽  
Michael Lochinvar Abundo ◽  
Evelyn Taboada

The multi-tier framework (MTF) of electricity access defines a continuum of electrification from tier 0, where access is inexistent or very limited, to tier 5 where access is of grid quality. Transitioning households from lower to higher tiers unlocks the potential in meeting more of their energy needs. This study investigates the transition towards higher tier electricity access on Gilutongan Island, an off-grid island of Cebu, Philippines, which is also an informal settlement community with no open land available for a centralized solar PV system. The solar PV potential of suitable rooftops on the island was determined using satellite imagery, ground measurements, and computation. The electricity demand of a cluster of 11 households was examined in detail; these households, situated near two suitable rooftops, were connected to an installed 7.92 kWp solar PV-based microgrid. Results show that the households moved up from lower to higher tier levels in all MTF attributes except for affordability. Nevertheless, the cost of a standard electricity consumption package of 1 kWh/day dropped from 18% of the average household income to 6%. Moving up on the electrification ladder to higher tier electricity access in off-grid areas is attainable with households clustered as a microgrid using rooftop solar PV. Affordability remains to be the biggest challenge that needs to be addressed.

Author(s):  
Rakesh Dalal ◽  
Kamal Bansal ◽  
Sapan Thapar

Rooftop solar photovoltaic(PV) installation in India have increased in last decade because of the flat 40 percent subsidy extended for rooftop solar PV systems (3 kWp and below) by the Indian government under the solar rooftop scheme. From the residential building owner's perspective, solar PV is competitive when it can produce electricity at a cost less than or equal grid electricity price, a condition referred as “grid parity”. For assessing grid parity of 3 kWp and 2 kWp residential solar PV system, 15 states capital and 19 major cities were considered  for the RET screen simulation by using solar isolation, utility grid tariff, system cost and other economic parameters. 3 kWp and 2 kWp rooftop solar PV with and without subsidy scenarios were considered for simulation using RETscreen software. We estimate that without subsidy no state could achieve grid parity for 2kWp rooftop solar PV plant. However with 3 kWp rooftop solar PV plant only 5 states could achieve grid parity without subsidy and with government subsidy number of states increased to 7, yet wide spread parity for residential rooftop solar PV is still not achieved. We find that high installation costs, subsidized utility grid supply to low energy consumer and financing rates are major barriers to grid parity.


Electronics ◽  
2018 ◽  
Vol 7 (7) ◽  
pp. 119 ◽  
Author(s):  
Muhammad Khan ◽  
Kamran Zeb ◽  
Waqar Uddin ◽  
P. Sathishkumar ◽  
Muhammad Ali ◽  
...  

Environment protection and energy saving are the most attractive trends in zero-carbon buildings. The most promising and environmentally friendly technique is building integrated photovoltaics (BIPV), which can also replace conventional buildings based on non-renewable energy. Despite the recent advances in technology, the cost of BIPV systems is still very high. Hence, reducing the cost is a major challenge. This paper examines and validates the effectiveness of low-cost aluminum (Al) foil as a reflector. The design and the performance of planer-reflector for BIPV systems are analyzed in detail. A Bi-reflector solar PV system (BRPVS) with thin film Al-foil reflector and an LLC converter for a BIPV system is proposed and experimented with a 400-W prototype. A cadmium–sulfide (CdS) photo-resistor sensor and an Arduino-based algorithm was developed to control the working of the reflectors. Furthermore, the effect of Al-foil reflectors on the temperature of PV module has been examined. The developed LLC converter confirmed stable output voltage despite large variation in input voltage proving its effectiveness for the proposed BRPVS. The experimental results of the proposed BRPVS with an Al-reflector of the same size as that of the solar PV module offered an enhancement of 28.47% in the output power.


2021 ◽  
Author(s):  
Williams S. Ebhota ◽  
Pavel Y. Tabakov

Abstract A rooftop solar photovoltaic (PV) system is an alternative electricity source that is increasingly being used for households. The potential of solar PV is location dependent that needs to be assessed before installation. This study focuses on the assessment of a solar PV potential of a site on coordinates − 29.853762°, 031.00634°, at Glenmore Crescent, Durban North, South Africa. In addition, it evaluates the performance of a 6 kW installed capacity grid-connected rooftop solar PV system to supply electricity to a household. The results, obtained from PV design and simulation tools – PV*SOL, Solargis prospect and pvPlanner, were used to analyse and establish the site and PV system technical viability. The system’s configuration is as follows: load profile - a 2-Person household with 2-children, energy consumption − 3500 kWh, system size − 6 kWp, installation type - roof mount, PV module type - c-Si - monocrystalline silicon, efficiency − 18.9%, orientation of PV modules -Azimuth 0° and Tilt 30°, inverter 95.9% (Euro efficiency), and no transformer. The results show: meteorological parameters - global horizontal irradiation (GHI) 1659.3 kWh/m2, direct normal irradiation (DNI) 1610.6 kWh/m2, air temperature 20.6°C; performance parameters - annual PV energy 8639 kWh, Specific annual yield 1403 kWh/kWp, performance ratio (PR) 74.9%, avoided CO₂ emissions 5662 kg/year, and solar fraction 42.5 %. The analysis and benchmarking of the results show that the proposed solar PV system under the current conditions is technically viable for household electrification in Durban North, South Africa.


Sign in / Sign up

Export Citation Format

Share Document