scholarly journals An Effective Acoustic Impedance Imaging Based on a Broadband Gaussian Beam Migration

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4105
Author(s):  
Shaoyong Liu ◽  
Wenting Zhu ◽  
Zhe Yan ◽  
Peng Xu ◽  
Huazhong Wang

The estimation of the subsurface acoustic impedance (AI) model is an important step of seismic data processing for oil and gas exploration. The full waveform inversion (FWI) is a powerful way to invert the subsurface parameters with surface acquired seismic data. Nevertheless, the strong nonlinear relationship between the seismic data and the subsurface model will cause nonconvergence and unstable problems in practice. To divide the nonlinear inversion into some more linear steps, a 2D AI inversion imaging method is proposed to estimate the broadband AI model based on a broadband reflectivity. Firstly, a novel scheme based on Gaussian beam migration (GBM) is proposed to produce the point spread function (PSF) and conventional image of the subsurface. Then, the broadband reflectivity can be obtained by implementing deconvolution on the image with respect to the calculated PSF. Assuming that the low-wavenumber part of the AI model can be deduced by the background velocity, we implemented the AI inversion imaging scheme by merging the obtained broadband reflectivity as the high-wavenumber part of the AI model and produced a broadband AI result. The developed broadband migration based on GBM as the computational hotspot of the proposed 2D AI inversion imaging includes only two GBM and one Gaussian beam demigraton (Born modeling) processes. Hence, the developed broadband GBM is more efficient than the broadband imaging using the least-squares migrations (LSMs) that require multiple iterations (every iteration includes one Born modeling and one migration process) to minimize the objective function of data residuals. Numerical examples of both synthetic data and field data have demonstrated the validity and application potential of the proposed method.

2017 ◽  
Vol 5 (3) ◽  
pp. SJ81-SJ90 ◽  
Author(s):  
Kainan Wang ◽  
Jesse Lomask ◽  
Felix Segovia

Well-log-to-seismic tying is a key step in many interpretation workflows for oil and gas exploration. Synthetic seismic traces from the wells are often manually tied to seismic data; this process can be very time consuming and, in some cases, inaccurate. Automatic methods, such as dynamic time warping (DTW), can match synthetic traces to seismic data. Although these methods are extremely fast, they tend to create interval velocities that are not geologically realistic. We have described the modification of DTW to create a blocked dynamic warping (BDW) method. BDW generates an automatic, optimal well tie that honors geologically consistent velocity constraints. Consequently, it results in updated velocities that are more realistic than other methods. BDW constrains the updated velocity to be constant or linearly variable inside each geologic layer. With an optimal correlation between synthetic seismograms and surface seismic data, this algorithm returns an automatically updated time-depth curve and an updated interval velocity model that still retains the original geologic velocity boundaries. In other words, the algorithm finds the optimal solution for tying the synthetic to the seismic data while restricting the interval velocity changes to coincide with the initial input blocking. We have determined the application of the BDW technique on a synthetic data example and field data set.


Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. S329-S340 ◽  
Author(s):  
Yubo Yue ◽  
Paul Sava ◽  
Zhongping Qian ◽  
Jidong Yang ◽  
Zhen Zou

Gaussian beam migration (GBM) is an effective imaging method that has the ability to image multiple arrivals while preserving the advantages of ray-based methods. We have extended this method to linearized least-squares imaging for elastic waves in isotropic media. We have dynamically transformed the multicomponent data to the principal components of different wave modes using the polarization information available in the beam migration process, and then we use Gaussian beams as wavefield propagator to construct the forward modeling and adjoint migration operators. Based on the constructed operators, we formulate a least-squares migration scheme that is iteratively solved using a preconditioned conjugate gradient method. With this method, we can obtain crosstalk-attenuated multiwave images with better subsurface illumination and higher resolution than those of the conventional elastic Gaussian beam migration. This method also allows us to achieve a good balance between computational cost and imaging accuracy, which are both important requirements for iterative least-squares migrations. Numerical tests on two synthetic data sets demonstrate the validity and effectiveness of our proposed method.


10.1144/sp509 ◽  
2021 ◽  
Vol 509 (1) ◽  
pp. NP-NP
Author(s):  
J. Hendry ◽  
P. Burgess ◽  
D. Hunt ◽  
X. Janson ◽  
V. Zampetti

Modern seismic data have become an essential toolkit for studying carbonate platforms and reservoirs in impressive detail. Whilst driven primarily by oil and gas exploration and development, data sharing and collaboration are delivering fundamental geological knowledge on carbonate systems, revealing platform geomorphologies and how their evolution on millennial time scales, as well as kilometric length scales, was forced by long-term eustatic, oceanographic or tectonic factors. Quantitative interrogation of modern seismic attributes in carbonate reservoirs permits flow units and barriers arising from depositional and diagenetic processes to be imaged and extrapolated between wells.This volume reviews the variety of carbonate platform and reservoir characteristics that can be interpreted from modern seismic data, illustrating the benefits of creative interaction between geophysical and carbonate geological experts at all stages of a seismic campaign. Papers cover carbonate exploration, including the uniquely challenging South Atlantic pre-salt reservoirs, seismic modelling of carbonates, and seismic indicators of fluid flow and diagenesis.


2021 ◽  
pp. 1-45
Author(s):  
Qin Su ◽  
Huahui Zeng ◽  
Yancan Tian ◽  
HaiLiang Li ◽  
Lei Lyu ◽  
...  

Seismic processing and interpretation techniques provide important tools for the oil and gas exploration of the Songliao Basin in eastern China, which is dominated by terrestrial facies. In the Songliao Basin, a large number of thin-sand reservoirs are widely distributed, which are the primary targets of potential oil and gas exploration and exploitation. An important job of the exploration in the Songliao Basin is to accurately describe the distribution of these thin-sand belts and the sand-body shapes. However, the thickness of these thin-sand reservoirs are generally below the resolution of the conventional seismic processing. Most of the reservoirs are thin-interbeds of sand and mudstones with strong vertical and lateral variations. This makes it difficult to accurately predict the vertical and horizontal distribution of the thin-sand bodies using the conventional seismic processing and interpretation methods. Additionally, these lithologic traps are difficult to identify due to the complex controlling factor and distribution characteristics, and strong concealment. These challenges motivate us to improve the seismic data quality to help delineate the thin-sand reservoirs. In this paper, we use the broadband, wide-azimuth, and high-density integrated seismic exploration technique to help delineate the thin-reservoirs. We first use field single-point excitation and single-point receiver acquisition to obtain seismic data with wide frequency-bands, wide-azimuth angles, and high folds, which contain rich geological information. Next, we perform the near-surface Q-compensation, viscoelastic prestack time migration, seismic attributes, and seismic waveform indication inversion on the new acquired seismic data. The 3D case study indicates the benefits of improving the imaging of thin-sand body and the accuracy of inversion and reservoir characterization using the method in this paper.


2019 ◽  
Vol 16 (6) ◽  
pp. 1301-1319 ◽  
Author(s):  
Rui Zhang ◽  
Jian-Ping Huang ◽  
Su-Bin Zhuang ◽  
Zhen-Chun Li

Abstract For large-scale 3D seismic data, target-oriented reservoir imaging is more attractive than conventional full-volume migration, in terms of computation efficiency. Gaussian beam migration (GBM) is one of the most robust depth imaging method, which not only keeps the advantages of ray methods, such as high efficiency and flexibility, but also allows us to solve caustics and multipathing problems. But conventional Gaussian beam migration requires slant stack for prestack data, and ray tracing from beam center location to subsurface, which is not easy to be directly applied for target-oriented imaging. In this paper, we modify the conventional Gaussian beam migration scheme, by shooting rays from subsurface image points to receivers to implement wavefield back-propagation. This modification helps us to achieve a better subsurface illumination in complex structure and allows simple implementation for target reservoir imaging. Significantly, compared with the wavefield-based GBM, our method does not reconstruct the subsurface snapshots, which has higher efficiency. But the proposed method is not as efficient as the conventional Gaussian beam migration. Synthetic and field data examples demonstrate the validity and the target-oriented imaging capability of our method.


Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. N15-N27 ◽  
Author(s):  
Carlos A. M. Assis ◽  
Henrique B. Santos ◽  
Jörg Schleicher

Acoustic impedance (AI) is a widely used seismic attribute in stratigraphic interpretation. Because of the frequency-band-limited nature of seismic data, seismic amplitude inversion cannot determine AI itself, but it can only provide an estimate of its variations, the relative AI (RAI). We have revisited and compared two alternative methods to transform stacked seismic data into RAI. One is colored inversion (CI), which requires well-log information, and the other is linear inversion (LI), which requires knowledge of the seismic source wavelet. We start by formulating the two approaches in a theoretically comparable manner. This allows us to conclude that both procedures are theoretically equivalent. We proceed to check whether the use of the CI results as the initial solution for LI can improve the RAI estimation. In our experiments, combining CI and LI cannot provide superior RAI results to those produced by each approach applied individually. Then, we analyze the LI performance with two distinct solvers for the associated linear system. Moreover, we investigate the sensitivity of both methods regarding the frequency content present in synthetic data. The numerical tests using the Marmousi2 model demonstrate that the CI and LI techniques can provide an RAI estimate of similar accuracy. A field-data example confirms the analysis using synthetic-data experiments. Our investigations confirm the theoretical and practical similarities of CI and LI regardless of the numerical strategy used in LI. An important result of our tests is that an increase in the low-frequency gap in the data leads to slightly deteriorated CI quality. In this case, LI required more iterations for the conjugate-gradient least-squares solver, but the final results were not much affected. Both methodologies provided interesting RAI profiles compared with well-log data, at low computational cost and with a simple parameterization.


2003 ◽  
Author(s):  
Yuan‐Chi Chang ◽  
Matthew Hill ◽  
Chung‐Sheng Li ◽  
Randy Pepper

2020 ◽  
Vol 8 (1) ◽  
pp. SA49-SA61
Author(s):  
Huihuang Tan ◽  
Donghong Zhou ◽  
Shengqiang Zhang ◽  
Zhijun Zhang ◽  
Xinyi Duan ◽  
...  

Amplitude-variation-with-offset (AVO) technique is one of the primary quantitative hydrocarbon discrimination methods with prestack seismic data. However, the prestack seismic data are usually have low data quality, such as nonflat gathers and nonpreserved amplitude due to absorption, attenuation, and/or many other reasons, which usually lead to a wrong AVO response. The Neogene formations in the Huanghekou area of the Bohai Bay Basin are unconsolidated clastics with a high average porosity, and we find that the attenuation on seismic signal is very strong, which causes an inconsistency of AVO responses between seismic gathers and its corresponding synthetics. Our research results indicate that the synthetic AVO response can match the field seismic gathers in the low-frequency end, but not in the high-frequency components. Thus, we have developed an AVO response correction method based on high-resolution complex spectral decomposition and low-frequency constraint. This method can help to achieve a correct high-resolution AVO response. Its application in Bohai oil fields reveals that it is an efficient way to identify hydrocarbons in rocks, which provides an important technique for support in oil and gas exploration and production in this area.


2016 ◽  
Vol 34 (1) ◽  
Author(s):  
Lourenildo W.B. Leite ◽  
Wildney W.S. Vieira ◽  
Boris Sibiryakov

ABSTRACT. The present paper is part of a major research study that has for objective the prediction of stress in sedimentary basins, as a contribution to geological and engineering methods and techniques for oil and gas exploration. Such an attractive and important scientific theme is based on the knowledge of the compressional...Keywords: sedimentary basin modeling, pressure prediction, subsurface stress. RESUMO. O presente trabalho faz parte de um projeto de estudomaior que tem por objetivo a predição de tensões embacias sedimentares, como uma contribuição aos métodos e técnicas da geologia e da engenharia de exploração de óleo e gás. Este assunto científico, atrativo e importante, é baseado...Palavras-chave: modelagem de bacia sedimentar, predição de pressão, tensão na subsuperfície.


Sign in / Sign up

Export Citation Format

Share Document