Simulation of Turbulent Combustion in Gasoline Direct Injection Spark-Ignited Engines Using a Stochastic Reactor Model

2021 ◽  
Author(s):  
Brady M. Wilmer ◽  
William F. Northrop

Abstract In this work, a stochastic reactor model (SRM) is presented that bridges the gap between multi-dimensional computational fluid dynamics (CFD) models and zero-dimensional models for simulating spark-ignited internal combustion engines. The quasi-dimensional approach calculates spatial temperature and composition of stochastic “particles” in the combustion chamber without defining their spatial position, thus allowing for mixture stratification while keeping computational costs low. The SRM simulates flame propagation using a three-zone combustion model consisting of burned gas, flame front, and unburned gas. This “flame brush” approach assumes a hemispherical flame front that propagates through the cylinder based on estimated turbulent flame speed. Cycle-averaged turbulence intensity (u’) is used in the model, calibrated using experimental data. Through the use of a kinetic mechanism, the model predicts key emissions such as CO, CO2, NO, NO2, and HC from both port fuel injection (PFI) and gasoline direct injection (GDI) engines, the latter through the implementation of a simplified spray model. Experimental data from three engines, two GDI and one PFI, were used to validate the model and calibrate cycle-averaged u’. Across all engines, the model was able to produce pressure curves that matched the experimental data. In terms of emissions, the simplified chemical kinetics mechanism matched trends of the experimental data, with the PFI results having higher accuracy. Pressure, burned fraction, and engine-out emissions predictions show that the SRM can reliably match experimental results in certain operating ranges, thus providing a viable alternative to complex CFD and single zone models.

Author(s):  
Sedigheh Tolou ◽  
Ravi Teja Vedula ◽  
Harold Schock ◽  
Guoming Zhu ◽  
Yong Sun ◽  
...  

Homogeneous charge is a preferred operation mode of gasoline direct-injection (GDI) engines. However, a limited amount of work exists in the literature for combustion models of this mode of engine operation. Current work describes a model developed and used to study combustion in a GDI engine having early intake fuel injection. The model was validated using experimental data obtained from a 1.6L Ford EcoBoost® four-cylinder engine, tested at the U.S. EPA. The start of combustion was determined from filtered cycle-averaged cylinder pressure measurements, based on the local maximum of third derivative with respect to crank angle. The subsequent heat release, meanwhile, was approximated using a double-Wiebe function, to account for the rapid initial pre-mixed combustion (stage 1) followed by a gradual diffusion-like state of combustion (stage 2) as observed in this GDI engine. A non-linear least-squares optimization was used to determine the tuning variables of Wiebe correlations, resulting in a semi-predictive combustion model. The effectiveness of the semi-predictive combustion model was tested by comparing the experimental in-cylinder pressures with results obtained from a model built using a one-dimensional engine simulation tool, GT-POWER (Gamma Technologies). Model comparisons were made for loads of 60, 120, and 180 N-m at speeds ranging from 1500 to 4500 rpm, in 500 rpm increments. The root-mean-square errors between predicted cylinder pressures and the experimental data were within 2.5% of in-cylinder peak pressure during combustion. The semi-predictive combustion model, verified using the GT-POWER simulation, was further studied to develop a predictive combustion model. The performance of the predictive combustion model was examined by regenerating the experimental cumulative heat release. The heat release analysis developed for the GDI engine was further applied to a dual mode, turbulent jet ignition (DM-TJI) engine. DM-TJI is an advanced combustion technology with a promising potential to extend the thermal efficiency of spark ignition engines with minimal engine-out emissions. The DM-TJI engine was observed to offer a faster burn rate and lower in-cylinder heat transfer when compared to the GDI engine under the same loads and speeds.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 189
Author(s):  
Manfredi Villani ◽  
Phillip Aquino

Direct optical access to the combustion chamber of a gasoline direct injection (GDI) engine provides extremely valuable information about the combustion process. Experimental measurements of the geometric characteristics of the turbulent flame—such as the flame radius, flame center, flame edges and flame brush thickness—are of fundamental interest in support of the development and validation of any combustion model. To determine the macroscopic properties of sprays and flames, visualization and digital image processing techniques are typically used in controlled experimental setups like single-cylinder optical engines or closed vessels, while optical measurements on mass-production engines are more uncommon. In this paper the optical experimental setup (consisting of a high-speed camera, a laser light source and a data acquisition system) used to characterize the planar turbulent flame propagation in the cylinder of a 3.5 L GDI V6 mass-production engine, is described. The image acquisition process and the image processing that is necessary to evaluate the geometric characteristics of the propagating flame front, which are usually omitted in the referenced literature, are reported in detail to provide a useful guideline to other researchers. The results show that the step-by-step algorithm and the calculation formulae proposed allow to retrieve clear visualizations of the propagating flame front and measurements of its geometrical properties.


2019 ◽  
Vol 142 (4) ◽  
Author(s):  
Nikhil Sharma ◽  
Avinash Kumar Agarwal

Abstract Fuel availability, global warming, and energy security are the three main driving forces, which determine suitability and long-term implementation potential of a renewable fuel for internal combustion engines for a variety of applications. Comprehensive engine experiments were conducted in a single-cylinder gasoline direct injection (GDI) engine prototype having a compression ratio of 10.5, for gaining insights into application of mixtures of gasoline and primary alcohols. Performance, emissions, combustion, and particulate characteristics were determined at different engine speeds (1500, 2000, 2500, 3000 rpm), different fuel injection pressures (FIP: 40, 80, 120, 160 bars) and different test fuel blends namely 15% (v/v) butanol, ethanol, and methanol blended with gasoline, respectively (Bu15, E15, and M15) and baseline gasoline at a fixed (optimum) spark timing of 24 deg before top dead center (bTDC). For a majority of operating conditions, gasohols exhibited superior characteristics except minor engine performance penalty. Gasohols therefore emerged as serious candidate as a transitional renewable fuel for utilization in the existing GDI engines, without requirement of any major hardware changes.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4210
Author(s):  
Alessandro d’Adamo ◽  
Clara Iacovano ◽  
Stefano Fontanesi

Turbulent combustion modelling in internal combustion engines (ICEs) is a challenging task. It is commonly synthetized by incorporating the interaction between chemical reactions and turbulent eddies into a unique term, namely turbulent flame speed sT. The task is very complex considering the variety of turbulent and chemical scales resulting from engine load/speed variations. In this scenario, advanced turbulent combustion models are asked to predict accurate burn rates under a wide range of turbulence–flame interaction regimes. The framework is further complicated by the difficulty in unambiguously evaluating in-cylinder turbulence and by the poor coherence of turbulent flame speed (sT) measurements in the literature. Finally, the simulated sT from combustion models is found to be rarely assessed in a rigorous manner. A methodology is presented to objectively measure the simulated sT by a generic combustion model over a range of engine-relevant combustion regimes, from Da = 0.5 to Da = 75 (i.e., from the thin reaction regime to wrinkled flamelets). A test case is proposed to assess steady-state burn rates under specified turbulence in a RANS modelling framework. The methodology is applied to a widely adopted combustion model (ECFM-3Z) and the comparison of the simulated sT with experimental datasets allows to identify modelling improvement areas. Dynamic functions are proposed based on turbulence intensity and Damköhler number. Finally, simulations using the improved flame speed are carried out and a satisfactory agreement of the simulation results with the experimental/theoretical correlations is found. This confirms the effectiveness and the general applicability of the methodology to any model. The use of grid/time resolution typical of ICE combustion simulations strengthens the relevance of the proposed dynamic functions. The presented analysis allows to improve the adherence of the simulated burn rate to that of literature turbulent flames, and it unfolds the innovative possibility to objectively test combustion models under any prescribed turbulence/flame interaction regime. The solid data-driven representation of turbulent combustion physics is expected to reduce the tuning effort in ICE combustion simulations, providing modelling robustness in a very critical area for virtual design of innovative combustion systems.


2000 ◽  
Vol 1 (1) ◽  
pp. 127-146 ◽  
Author(s):  
Z Han ◽  
Z Xu ◽  
N Trigui

Models were developed to describe the spray wall impingement processes that take place in internal combustion engines. In this report focus is placed on the model formulation and experiment assessment of the spray/wall interaction submodels. It is identified that the Leidenfrost phenomenon is very unlikely to occur in a spark ignition (SI) engine including stratified-charge operation in a direct injection spark ignition (DISI) engine. A more comprehensive splashing/deposition threshold function is proposed to include the effects of surface roughness and pre-existing liquid film. Based on the wave phenomena observed on the surface of the liquid crown formed during drop impingement, a new splash breakup model is developed using linear instability analysis. The predicted drop size agrees well with available single-drop impingement experimental data. A new formulation for the post-impingement droplet velocity is also given which uses statistical sampling and jet impingement theory. The proposed models were assessed by comparing computations with two sets of experimental sprays impinging on a flat plate with the use of a pintle nozzle injector for port fuel injection (PFI) engines. The computed spray shape, normal and tangential penetration and droplet size show good agreement with experimental data.


Author(s):  
Yu Feng ◽  
Xiaohong Jiao ◽  
Zhijing Wang

Accurate air–fuel ratio control is a key affecting factor for improving fuel economy and reducing exhaust emissions for internal combustion engines. Challenging issues in air–fuel control are the accurate estimation of cylinder air charge for achieving the stoichiometric in-cylinder air–fuel ratio and the disposition of measurement time delay from the oxygen sensor for removing its limits on the achievable feedback performance. In this article, based on hybrid discrete–continuous-time descriptions for the cylinder air charge dynamics and air–fuel feedback regulation controlled plant, a novel fuel injection controller with adaptive feedback and predictive feedforward is designed to ensure accurate air–fuel control of a gasoline direct injection engine. The feedforward fuel injection is determined based on the cylinder air charge prediction using unscented Kalman filter for the compensation of the injection delay and modelling error and the attenuation of the measurement noise. The feedback fuel compensation is designed as a proportional-integral structure with adaptive gains by means of an adaptive stabilization method of uncertain input delayed systems for the management of the transport delay and parameter uncertainty. The effectiveness of the proposed fuelling control against time delay, modelling error, measurement noise and parameter uncertainty is demonstrated by the simulation utilizing experimental data from a real V6 GDI engine.


Energy ◽  
2020 ◽  
Vol 197 ◽  
pp. 117173 ◽  
Author(s):  
Jeongwoo Lee ◽  
Cheolwoong Park ◽  
Jongwon Bae ◽  
Yongrae Kim ◽  
Sunyoup Lee ◽  
...  

2021 ◽  
pp. 146808742110139
Author(s):  
Arun C Ravindran ◽  
Sage L Kokjohn ◽  
Benjamin Petersen

To accurately model the Direct Injection Spark Ignition (DISI) combustion process, it is important to account for the effects of the spark energy discharge process. The proximity of the injected fuel spray and spark electrodes leads to steep gradients in local velocities and equivalence ratios, particularly under cold-start conditions when multiple injection strategies are employed. The variations in the local properties at the spark plug location play a significant role in the growth of the initial flame kernel established by the spark and its subsequent evolution into a turbulent flame. In the present work, an ignition model is presented that is compatible with the G-Equation combustion model, which responds to the effects of spark energy discharge and the associated plasma expansion effects. The model is referred to as the Plasma Velocity on G-surface (PVG) model, and it uses the G-surface to capture the early kernel growth. The model derives its theory from the Discrete Particle Ignition (DPIK) model, which accounts for the effects of electrode heat transfer, spark energy, and chemical heat release from the fuel on the early flame kernel growth. The local turbulent flame speed has been calculated based on the instantaneous location of the flame kernel on the Borghi-Peters regime diagram. The model has been validated against the experimental measurements given by Maly and Vogel,1 and the constant volume flame growth measurements provided by Nwagwe et al.2 Multi-cycle simulations were performed in CONVERGE3 using the PVG ignition model in combination with the G-Equation-based GLR4 model in a RANS framework to capture the combustion characteristics of a DISI engine. Good agreements with the experimental pressure trace and apparent heat-release rates were obtained. Additionally, the PVG ignition model was observed to substantially reduce the sensitivity of the default G-sourcing ignition method employed by CONVERGE.


Author(s):  
P. Griebel ◽  
R. Bombach ◽  
A. Inauen ◽  
R. Scha¨ren ◽  
S. Schenker ◽  
...  

The present experimental study focuses on flame characteristics and turbulent flame speeds of lean premixed flames typical for stationary gas turbines. Measurements were performed in a generic combustor at a preheating temperature of 673 K, pressures up to 14.4 bars (absolute), a bulk velocity of 40 m/s, and an equivalence ratio in the range of 0.43–0.56. Turbulence intensities and integral length scales were measured in an isothermal flow field with Particle Image Velocimetry (PIV). The turbulence intensity (u′) and the integral length scale (LT) at the combustor inlet were varied using turbulence grids with different blockage ratios and different hole diameters. The position, shape, and fluctuation of the flame front were characterized by a statistical analysis of Planar Laser Induced Fluorescence images of the OH radical (OH-PLIF). Turbulent flame speeds were calculated and their dependence on operating conditions (p, φ) and turbulence quantities (u′, LT) are discussed and compared to correlations from literature. No influence of pressure on the most probable flame front position or on the turbulent flame speed was observed. As expected, the equivalence ratio had a strong influence on the most probable flame front position, the spatial flame front fluctuation, and the turbulent flame speed. Decreasing the equivalence ratio results in a shift of the flame front position farther downstream due to the lower fuel concentration and the lower adiabatic flame temperature and subsequently lower turbulent flame speed. Flames operated at leaner equivalence ratios show a broader spatial fluctuation as the lean blow-out limit is approached and therefore are more susceptible to flow disturbances. In addition, because of a lower turbulent flame speed these flames stabilize farther downstream in a region with higher velocity fluctuations. This increases the fluctuation of the flame front. Flames with higher turbulence quantities (u′, LT) in the vicinity of the combustor inlet exhibited a shorter length and a higher calculated flame speed. An enhanced turbulent heat and mass transport from the recirculation zone to the flame root location due to an intensified mixing which might increase the preheating temperature or the radical concentration is believed to be the reason for that.


Sign in / Sign up

Export Citation Format

Share Document