scholarly journals Estimating the State of Health of Lithium-Ion Batteries with a High Discharge Rate through Impedance

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4833
Author(s):  
Shida Jiang ◽  
Zhengxiang Song

Lithium-ion batteries are an attractive power source in many scenarios. In some particular cases, including providing backup power for drones, frequency modulation, and powering electric tools, lithium-ion batteries are required to discharge at a high rate (2~20 C). In this work, we present a method to estimate the state of health (SOH) of lithium-ion batteries with a high discharge rate using the battery’s impedance at three characteristic frequencies. Firstly, a battery model is used to fit the impedance spectrum of twelve LiFePO4 batteries. Secondly, a basic estimation model is built to estimate the SOH of the batteries via the parameters of the battery model. The model is trained using the data of six batteries and is tested on another six. The RMS of relative error of the model is lower than 4.2% at 10 C and lower than 2.8% at 15 C, even when the low-frequency feature of the impedance spectrum is ignored. Thirdly, we adapt the basic model so that the SOH estimation can be performed only using the battery’s impedance at three characteristic frequencies without having to measure the entire impedance spectrum. The RMS of relative error of this adapted model at 10 C and 15 C is 3.11% and 4.25%, respectively.

2010 ◽  
Vol 177 ◽  
pp. 208-210
Author(s):  
Yi Jie Gu ◽  
Cui Song Zeng ◽  
Yu Bo Chen ◽  
Hui Kang Wu ◽  
Hong Quan Liu ◽  
...  

Olivine compounds LiFePO4 were prepared by the solid state reaction, and the electrochemical properties were studied with the composite cathode of LiFePO4/mesocarbon nanobead. High discharge rate performance can be achieved with the designed composite cathode of LiFePO4/mesocarbon nanobead. According to the experiment results, batteries with the composite cathode deliver discharge capacity of 1087mAh for 18650 type cell at 20C discharge rate at room temperature. The analysis shows that the uniformity of mesocarbon nanobead around LiFePO4 can supply enough change for electron transporting, which can enhance the rate capability for LiFePO4 cathode lithium ion batteries. It is confirmed that lithium ion batteries with LiFePO4 as cathode are suitable to electric vehicle application.


2021 ◽  
Vol 507 ◽  
pp. 230262
Author(s):  
Lei Feng ◽  
Lihua Jiang ◽  
Jialong Liu ◽  
Zhaoyu Wang ◽  
Zesen Wei ◽  
...  

2014 ◽  
Vol 04 (02) ◽  
pp. 1450009 ◽  
Author(s):  
Mojtaba Rahimabady ◽  
Li Lu ◽  
Kui Yao

Multilayer dielectric capacitors were fabricated from nanocomposite precursor comprised of BaTiO 3@ TiO 2 core–shell nanosized particles and poly(vinylidene fluoride–hexafluoropropylene) (P(VDF–HFP)) polymer matrix (20 vol%). The multilayer capacitors showed very high discharge speed and high discharged energy density of around 2.5 J/cm3 at its breakdown field (~ 166 MV/m). The energy density of the nanocomposite multilayer capacitors was substantially higher than the energy density of commercially used power capacitors. Low cost, flexible structure, high discharge rate and energy density suggest that the nanocomposite multilayer capacitors are promising for energy storage applications in many power devices and systems.


Sign in / Sign up

Export Citation Format

Share Document