scholarly journals Fault-Tolerant Control of a Wind Turbine Generator Based on Fuzzy Logic and Using Ensemble Learning

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5167
Author(s):  
Jordi Cusidó ◽  
Arnau López ◽  
Mattia Beretta

Wind energy is a form of renewable energy with the highest installed capacity. However, it is necessary to reduce the operation and maintenance costs and extend the lifetime of wind turbines to make wind energy more competitive. This paper presents a power-derating-based Fault-Tolerant Control (FTC) model in 2 MW three-bladed wind turbines implemented using the National Renewable Energy Laboratory’s (NREL) Fatigue, Aerodynamics, Structures, and Turbulence (FAST) wind turbine simulator. This control strategy is potentially supported by the health status of the gearbox, which was predicted by means of algorithms and quantified in an indicator denominated as a merge developed by SMARTIVE, a pioneering of in this idea. Fuzzy logic was employed in order to decide whether to down-regulate the output power or not, and to which level to adjust to the needs of the turbines. Simulation results demonstrated that a reduction in the power output resulted in a safer operation, since the stresses withstood by the blades and tower significantly decreased. Moreover, the results supported empirically that a diminution in the generator torque and speed was acheived, resulting in a drop in the gearbox bearing and oil temperatures. By implementing this power-derating FTC, the downtime due to failure stops could be controlled, and thus the power production noticeably grew. It has been estimated that more than 325,000 tons of CO2 could be avoided yearly if implemented globally.

Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3097 ◽  
Author(s):  
Donggil Kim ◽  
Dongik Lee

Wind energy is one of the fastest growing energy sources in the world. It is expected that by the end of 2022 the installed capacity will exceed 250 GW thanks to the supply of large scale wind turbines in Europe. However, there are still challenging problems with wind turbines. In particular, off-shore and large-scale wind turbines are required to tackle the issue of maintainability and availability because they are installed in harsh off-shore environments, which may also prevent engineers from accessing the site for immediate repair works. Fault-tolerant control techniques have been widely exploited to overcome this issue. This paper proposes a novel fault-tolerant control strategy for wind turbines. The proposed strategy has a hierarchical structure, consisting of a pitch controller and a wind turbine controller, with parameter estimations using the adaptive fading Kalman filter technique. The pitch controller compensates any fault with a pitching actuator, while the wind turbine controller computes the optimal reference command for pitching behavior so that the effect of the fault with a pitch actuator can be minimized. The performance of the proposed approach is demonstrated through a set of simulations with a wind turbine benchmark model.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Younes Ait El Maati ◽  
Lhoussain El Bahir ◽  
Khalid Faitah

This paper presents a method to control the rotor speed of wind turbines in presence of gearbox efficiency fault. This kind of faults happens due to lack of lubrication. It affects the dynamic of the principal shaft and thus the rotor speed. The principle of the fault tolerant control is to find a bloc that equalizes the dynamics of the healthy and faulty situations. The effectiveness decrease impacts on not only the dynamics but also the steady state value of the rotor speed. The last reason makes it mandatory to add an integral term on the steady state error to cancel the residual between the measured and operating point rotor speed. The convergence of the method is proven with respect to the rotor parameters and its effectiveness is evaluated through the rotor speed.


Author(s):  
Houda Chouiref ◽  
Boumedyen Boussaid ◽  
Mohamed Naceur Abdelkrim ◽  
Vicenç Puig ◽  
Christophe Aubrun

In order to keep wind turbines connected and in operation at all times despite the occurrence of some faults, advanced fault detection and accommodation schemes are required. To achieve this goal, this paper proposes to use the Linear Parameter Varying approach to design an Active Fault Tolerant Control for wind turbines. This Active Fault Tolerant Control is integrated with a Fault Detection and Isolation approach. Fault detection is based on a Linear Parameter Varying interval predictor approach while fault isolation is based on analysing the residual fault signatures. To include fault-tolerance in the control system (already available in the considered wind turbine case study based on the well known SAFEPROCESS benchmark), the information of the Fault Detection and Isolation approach block is exploited and it is used in the implementation of a virtual actuator and sensor scheme. The proposed Active Fault Tolerant Control is evaluated using fault scenarios which are proposed in the wind turbine benchmark to assess its performance. Results show the effectiveness of the proposed Active Fault Tolerant Control approach in faulty situation.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1791
Author(s):  
Afef Fekih ◽  
Saleh Mobayen ◽  
Chih-Chiang Chen

This paper proposes an adaptive fault tolerant control (FTC) design for a variable speed wind turbine (WT) operating in the high wind speeds region. It aims at mitigating pitch actuator faults and regulating the generator power to its rated value, thereby reducing the mechanical stress in the high wind speeds region. The proposed FTC design implements a sliding mode control (SMC) approach with an adaptation law that estimates the upper bounds of the uncertainties. System stability and uniform boundedness of the outputs was proven using the Lyapunov stability theory. The proposed approach was validated on a 5 MW three-blade wind turbine modeled using the National Renewable Energy Laboratory’s (NREL) Fatigue, Aerodynamics, Structures and Turbulence (FAST) wind turbine simulator. The controller’s performance was assessed in the presence of several pitch actuator faults and turbulent wind conditions. Its performance was also compared to that of a standard SMC approach. Mitigation of blade pitch actuator faults, generation of uniform power, smoother pitching actions and reduced chattering compared to standard SMC approach are among the main features of the proposed design.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4941
Author(s):  
Miguel Á. Rodríguez-López ◽  
Emilio Cerdá ◽  
Pablo del Rio

Global warming represents a serious challenge, which requires the adoption of renewable energy technologies worldwide. However, it can negatively affect the availability of renewable energy resources, such as wind, which are needed for electricity generation. In this context, there is an increasing need for more accurate evaluations of wind turbine power curves. A novel methodology to model the power curves of wind turbines, which combines the use of artificial neural networks (ANN) and Fuzzy logic rules, is proposed in this paper. This methodology assesses the role of environmental temperature in the power curve and the impact of temperature increases on wind energy production. The application of this methodology is illustrated with the simulation of the impact of global warming on the electricity generation of a wind farm. Due to the non-linear relationship between the power output of a turbine and its primary and derived parameters, it is shown that ANN combined with an expert system formed by a Fuzzy logic module fit power curve modeling processes well. The application of the methodology shows that an increase in temperatures would trigger a small reduction in the performance of wind turbines.


2018 ◽  
Vol 27 (47) ◽  
pp. 117
Author(s):  
David Esteban Albadan-Molano ◽  
Jorge Enrique Salamanca-Céspedes ◽  
Adriana Patricia Gallego-Torres

The GEOM research seedbed of the Universidad Distrital Francisco José de Caldas is developing low and medium power wind turbines, and here we present an advance. Wind energy is a very important source of renewable energy and an excellent alternative for the transition to sustainable energy that the world needs. It is known that horizontal axis wind turbines are more efficient energetically, and that the propeller is determinant for this efficiency; therefore, the correct geometric design of the propeller is essential for an optimum wind turbine. This article analyzes the most relevant aspects in the design of a wind propeller, using MATLAB® software to illustrate its behavior, and suggests an ideal airfoil for wind applications.


2019 ◽  
pp. 1259-1265
Author(s):  
Rawnak A. Abdul wahab ◽  
Sura T. Nassir ◽  
Firas A. Hadi

Wind energy is becoming one of the renewable energy that has attracted great attention all over the world. This research work aims to build a map by which the user can have a thought about the number of generation hours of electricity from wind through all the year at the location of study (Wasit-Iraq). To interact the idea, this study included using the work included using different wind turbines at different heights. The results show that Gamesa G58-850 KW wind turbine gives more generated hours at 50 meters height.


Sign in / Sign up

Export Citation Format

Share Document