scholarly journals Monitoring the Geometry Morphology of Complex Hydraulic Fracture Network by Using a Multiobjective Inversion Algorithm Based on Decomposition

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5216
Author(s):  
Liming Zhang ◽  
Lili Xue ◽  
Chenyu Cui ◽  
Ji Qi ◽  
Jijia Sun ◽  
...  

The fracturing technique is widely used in many fields. Fracture has a greater impact on the movement of fluids in formations. Knowing information about a fracture is key to judging its effect, but detailed information about complex fracture networks is difficult to obtain. In this paper, we propose a new method to describe the shape of a complex fracture network. This method is based on microseismic results and uses the L-system to establish a method for characterizing a complex fracture network. The method also combines with decomposition to construct a new method called the multiobjective fracture network inversion algorithm based on decomposition (MOFNIAD). The coverage of microseismic monitoring results and the degree of fitting of production data are the two objective functions of the inversion fracture network. The multiobjective fracture network inversion algorithm can be optimized to obtain multiple optimal solutions that meet different target weights. Therefore, this paper established a multischeme decision method that approached the ideal solution, sorting technology and AHP to provide theoretical guidance for finding a more ideal fracture network. According to the error of microseismic monitoring results, we established two cases of fracture to verify the proposed method. Judging from the results of the examples, the fracture network finally obtained was similar to actual fractures.

Author(s):  
Hannes Hofmann ◽  
Tayfun Babadagli ◽  
Günter Zimmermann

The creation of large complex fracture networks by hydraulic fracturing is imperative for enhanced oil recovery from tight sand or shale reservoirs, tight gas extraction, and Hot-Dry-Rock (HDR) geothermal systems to improve the contact area to the rock matrix. Although conventional fracturing treatments may result in bi-wing fractures, there is evidence by microseismic mapping that fracture networks can develop in many unconventional reservoirs, especially when natural fracture systems are present and the differences between the principle stresses are low. However, not much insight is gained about fracture development as well as fluid and proppant transport in naturally fractured tight formations. In order to clarify the relationship between rock and treatment parameters, and resulting fracture properties, numerical simulations were performed using a commercial Discrete Fracture Network (DFN) simulator. A comprehensive sensitivity analysis is presented to identify typical fracture network patterns resulting from massive water fracturing treatments in different geological conditions. It is shown how the treatment parameters influence the fracture development and what type of fracture patterns may result from different treatment designs. The focus of this study is on complex fracture network development in different natural fracture systems. Additionally, the applicability of the DFN simulator for modeling shale gas stimulation and HDR stimulation is critically discussed. The approach stated above gives an insight into the relationships between rock properties (specifically matrix properties and characteristics of natural fracture systems) and the properties of developed fracture networks. Various simulated scenarios show typical conditions under which different complex fracture patterns can develop and prescribe efficient treatment designs to generate these fracture systems. Hydraulic stimulation is essential for the production of oil, gas, or heat from ultratight formations like shales and basement rocks (mainly granite). If natural fracture systems are present, the fracturing process becomes more complex to simulate. Our simulation results reveal valuable information about main parameters influencing fracture network properties, major factors leading to complex fracture network development, and differences between HDR and shale gas/oil shale stimulations.


2017 ◽  
Vol 15 (1) ◽  
pp. 126-134 ◽  
Author(s):  
Wen-Dong Wang ◽  
Yu-Liang Su ◽  
Qi Zhang ◽  
Gang Xiang ◽  
Shi-Ming Cui

Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 1) ◽  
Author(s):  
Haibo Wang ◽  
Tong Zhou ◽  
Fengxia Li

Abstract Shale gas reservoirs have gradually become the main source for oil and gas production. The automatic optimization technology of complex fracture network in fractured horizontal wells is the key technology to realize the efficient development of shale gas reservoirs. In this paper, based on the flow model of shale gas reservoirs, the porosity/permeability of the matrix system and natural fracture system is characterized. The fracture network morphology is finely characterized by the fracture network expansion calculation method, and the flow model was proposed and solved. On this basis, the influence of matrix permeability, matrix porosity, fracture permeability, fracture porosity, and fracture length on the production of shale gas reservoirs is studied. The optimal design of fracture length and fracture location was carried, and the automatic optimization method of complex fracture network parameters based on simultaneous perturbation stochastic approximation (SPSA) was proposed. The method was applied in a shale gas reservoir, and the results showed that the proposed automatic optimization method of the complex fracture network in shale gas reservoirs can automatically optimize the parameters such as fracture location and fracture length and obtain the optimal fracture network distribution matching with geological conditions.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Gou Feifei ◽  
Liu Chuanxi ◽  
Ren Zongxiao ◽  
Qu Zhan ◽  
Wang Sukai ◽  
...  

Unconventional resources have been successfully exploited with technological advancements in horizontal-drilling and multistage hydraulic-fracturing, especially in North America. Due to preexisting natural fractures and the presence of stress isotropy, several complex fracture networks can be generated during fracturing operations in unconventional reservoirs. Using the DVS method, a semianalytical model was created to analyze the transient pressure behavior of a complex fracture network in which hydraulic and natural fractures interconnect with inclined angles. In this model, the complex fracture network can be divided into a proper number of segments. With this approach, we are able to focus on a detailed description of the network properties, such as the complex geometry and varying conductivity of the fracture. The accuracy of the new model was demonstrated by ECLIPSE. Using this method, we defined six flow patterns: linear flow, fracture interference flow, transitional flow, biradial flow, pseudoradial flow, and boundary response flow. A sensitivity analysis was conducted to analyze each of these flow regimes. This work provides a useful tool for reservoir engineers for fracture designing as well as estimating the performance of a complex fracture network.


2020 ◽  
pp. 014459872097251
Author(s):  
Wenguang Duan ◽  
Baojiang Sun ◽  
Deng Pan ◽  
Tao Wang ◽  
Tiankui Guo ◽  
...  

The tight sandstone oil reservoirs characterized by the low porosity and permeability must be hydraulically fractured to obtain the commercial production. Nevertheless, the post-fracturing production of tight oil reservoirs is not always satisfactory. The influence mechanism of various factors on the fracture propagation in the tight oil reservoirs needs further investigation to provide an optimized fracturing plan, obtain an expected fracture morphology and increase the oil productivity. Thus, the horizontal well fracturing simulations were carried out in a large-scale true tri-axial test system with the samples from the Upper Triassic Yanchang Fm tight sandstone outcrops in Yanchang County, Shaanxi, China, and the results were compared with those of fracturing simulations of the shale outcrop in the 5th member of Xujiahe Fm (abbreviated as the Xu 5th Member) in the Sichuan Basin. The effects of the natural fracture (NF) development degree, horizontal in-situ stress conditions, fracturing treatment parameters, etc. on the hydraulic fracture (HF) propagation morphology were investigated. The results show that conventional hydraulic fracturing of the tight sandstone without NFs only produces a single double-wing primary fracture. The fracture propagation path in the shale or the tight sandstone with developed NFs is controlled by the high horizontal differential stress. The higher stress difference (<12MPa) facilitates forming the complex fracture network. It is recommended to fracture the reservoir with developed NFs by injecting the high-viscosity guar gum firstly and the low-viscosity slick water then to increase the SRV. The low-to-high variable rate fracturing method is recommended as the low injection rate facilitates the fracturing fluid filtration into the NF system, and the high injection rate increases the net pressure within the fracture. The dual-horizontal well simultaneous fracturing increases the HF density and enhances the HF complexity in the reservoir, and significantly increases the possibility of forming the complex fracture network. The fracturing pressure curves reflect the fracture propagation status. According to statistical analysis, the fracturing curves are divided into types corresponding to multi-bedding plane (BP) opening, single fracture generation, multi-fracture propagation under variable rate fracturing, and forming of the fracture network through communicating the HF with NFs. The results provide a reference for the study of the HF propagation mechanism and the fracturing design in the tight sandstone reservoirs.


Sign in / Sign up

Export Citation Format

Share Document