scholarly journals Metamodeling and On-Line Clustering for Loss-of-Flow Accident Precursors Identification in a Superconducting Magnet Cryogenic Cooling Circuit

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5552
Author(s):  
Vincenzo Destino ◽  
Nicola Pedroni ◽  
Roberto Bonifetto ◽  
Francesco Di Di Maio ◽  
Laura Savoldi ◽  
...  

In the International Thermonuclear Experimental Reactor, plasma is magnetically confined with Superconductive Magnets (SMs) that must be maintained at the cryogenic temperature of 4.5 K by one or more Superconducting Magnet Cryogenic Cooling Circuits (SMCCC). To guarantee cooling, Loss-Of-Flow Accidents (LOFAs) in the SMCCC are to be avoided. In this work, we develop a three-step methodology for the prompt detection of LOFA precursors (i.e., those combinations of component failures causing a LOFA). First, we randomly generate accident scenarios by Monte Carlo sampling of the failures of typical SMCCC components and simulate the corresponding transient system response by a deterministic thermal-hydraulic code. In this phase, we also employ quick-running Proper Orthogonal Decomposition (POD)-based Kriging metamodels, adaptively trained to reproduce the output of the long-running code, to decrease the computational time. Second, we group the generated scenarios by a Spectral Clustering (SC) employing the Fuzzy C-Means (FCM), in order to identify the main patterns of system evolution towards abnormal states (e.g., a LOFA). Third, we develop an On-line Supervised Spectral Clustering (OSSC) technique to associate time-varying parameters measured during plant functioning to one of the prototypical groups obtained, which may highlight the related LOFA precursors (in terms of SMCCC components failures). We apply the proposed technique to the simplified model of a cryogenic cooling circuit of a single module of the ITER Central Solenoid Magnet (CSM). The framework developed promptly detects 95% of LOFA events and around 80% of the related precursors.

Author(s):  
V. Destino ◽  
R. Bonifetto ◽  
F. Di Maio ◽  
N. Pedroni ◽  
R. Zanino ◽  
...  

1980 ◽  
Vol 178 (1) ◽  
pp. 85-93 ◽  
Author(s):  
Z. Árvay ◽  
T. Fényes ◽  
K. Füle ◽  
T. Kibédi ◽  
S. László ◽  
...  

Author(s):  
Jung-eui Hong ◽  
Cihan H. Dagli ◽  
Kenneth M. Ragsdell

Abstract The primary function of the Wheatstone bridge is to measure an unknown resistance. The elements of this well-known measurement circuit will take on different values depending upon the range and accuracy required for a particular application. The Taguchi approach to parameter design is used to select values for the measurement circuit elements so as to reduce measurement error. Next we introduce the use of an artificial neural network to extrapolate limited experimental results to predict system response over a wide range of applications. This approach can be employed for on-line quality control of the manufacture of such device.


1983 ◽  
Vol 105 (3) ◽  
pp. 606-614 ◽  
Author(s):  
H. D. Nelson ◽  
W. L. Meacham ◽  
D. P. Fleming ◽  
A. F. Kascak

The method of component mode synthesis is developed to determine the forced response of nonlinear, multishaft, rotor-bearing systems. The formulation allows for simulation of system response due to blade loss, distributed unbalance, base shock, maneuver loads, and specified fixed frame forces. The motion of each rotating component of the system is described by superposing constraint modes associated with boundary coordinates and constrained precessional modes associated with internal coordinates. The precessional modes are truncated for each component and the reduced component equations are assembled with the nonlinear supports and interconnections to form a set of nonlinear system equations of reduced order. These equations are then numerically integrated to obtain the system response. A computer program, which is presently restricted to single shaft systems has been written and results are presented for transient system response associated with blade loss dynamics, with squeeze film dampers, and with interference rubs.


Author(s):  
Satyavir Singh ◽  
Mohammad Abid Bazaz ◽  
Shahkar Ahmad Nahvi

Purpose The purpose of this paper is to demonstrate the applicability of the Discrete Empirical Interpolation method (DEIM) for simulating the swing dynamics of benchmark power system problems. The authors demonstrate that considerable savings in computational time and resources are obtained using this methodology. Another purpose is to apply a recently developed modified DEIM strategy with a reduced on-line computational burden on this problem. Design/methodology/approach On-line computational cost of the power system dynamics problem is reduced by using DEIM, which reduces the complexity of the evaluation of the nonlinear function in the reduced model to a cost proportional to the number of reduced modes. The on-line computational cost is reduced by using an approximate snap-shot ensemble to construct the reduced basis. Findings Considerable savings in computational resources and time are obtained when DEIM is used for simulating swing dynamics. The on-line cost implications of DEIM are also reduced considerably by using approximate snapshots to construct the reduced basis. Originality/value Applicability of DEIM (with and without approximate ensemble) to a large-scale power system dynamics problem is demonstrated for the first time.


Author(s):  
Mostafa Salama ◽  
Vladimir V. Vantsevich

Studies of the tire-terrain interaction have mostly been completed on vehicles with steered wheels, but not much work has been done regarding skid-steered Unmanned Ground Vehicles (UGV). This paper introduces a mathematical model of normal and longitudinal dynamics of a UGV with four skid-steered pneumatic tire wheels. Unlike the common approach, in which two wheels at each side are treated as one wheel (i.e., having the same rotational speeds), all four wheels in this study are independently driven. Thus the interaction of each tire with deformable terrain is introduced as holonomic constraints. The stress-strain characteristics for tire-soil interaction are analyzed based on modern Terramechanics methods and then further used to determine the circumferential wheel forces of the four tires. Contributions of three components of each tire circumferential force to tire slippages are modeled and analyzed when the tire normal loads vary during vehicle straight-line motion. The considered tire-soil characteristics are mathematically reduced to a form that allows condensing the computational time for on-line computing tire-terrain characteristics. Additionally, rolling resistance of the tires is analyzed and incorporated in the UGV dynamic equations. Moreover, the paper describes the physics of slip power losses in the tire-soil interaction of the four tires and applies it to small skid-steered UGV. This study also formulates an optimization problem of the minimization of the power losses in the tire-soil interactions due to the tire slippage.


Author(s):  
Gullik A. Jensen ◽  
Thor I. Fossen

This paper considers mathematical models for model-based controller design in offshore pipelay operations. Three classes of models for control design are discussed, real-world models suitable for controller design verification, controller and observer models which are used on-line in the control system implementation. The control application place requirements on the model with respect to the computational time, dynamic behavior, stability and accuracy. Models such as the beam model, two catenary models, as well as general finite element (FE) models obtained from computer programs were not able to meet all of the requirements, and two recent dynamic models designed for control are presented, which bridge the gap between the simple analytical and more complex FE models. For completeness, modeling of the pipelay vessel, stinger and roller interaction, soil and seabed interaction and environmental loads are discussed.


Sign in / Sign up

Export Citation Format

Share Document