scholarly journals A New Evaluation of Skin Factor in Inclined Wells with Anisotropic Permeability

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5585
Author(s):  
Ekhwaiter Abobaker ◽  
Abadelhalim Elsanoose ◽  
Faisal Khan ◽  
Mohammad Azizur Rahman ◽  
Amer Aborig ◽  
...  

Oil and gas well productivity can be affected by a number of different skin factors, the combined influences of which contribute to a well’s total skin factor. The skin caused by deviated wells is one such well-known factor. The present study aimed to investigate skin effects caused by deviated well slants when considering vertical-to-horizontal permeability anisotropy. The research employed computational fluid dynamics (CFD) software to simulate fluid flows in inclined wells through the injection of water with Darcy flow using 3D geometric formations. The present work investigates the effects of four main characteristics—namely, the permeability anisotropy, wellbore radius, reservoir thickness, and deviation angle—of open-hole inclined wells. Additional investigations sought to verify the effect of the direction of perforations on the skin factor or pressure drop in perforated inclined wells. In the case of an inclined open hole well, the novel correlation produced in the current study simplifies the estimation of the skin factor of inclined wells at different inclination angles. Our comparison indicates good agreement between the proposed correlation and available models. Furthermore, the results demonstrated a deviation in the skin factor estimation results for perforated inclined wells in different perforation orientation scenarios; therefore, existing models must be improved in light of this variance. This work contributes to the understanding and simulation of the effects of well inclination on skin factor in the near-wellbore region.

2014 ◽  
Author(s):  
Qu Hai ◽  
Zhao Xiaoxiang

Abstract Multistage hydrajet-fracturing combines hydrajet perforating and hydraulic fracturing to perform separate, sequential fracture stimulations without mechanical packers. It can reasonably place fractures according to geological condition, and then accurately treat them. Without packer, it uses dynamic isolation to seal flow into target, saving operating time and lowering operating risk. Therefore, the process not only especially adapts to stimulate open hole, but effectively treats slotted liner completion. The mechanisms and fluid dynamics of multistage hydrajet-fracturing technology are investigated with numerical simulation and laboratory experiments. More than 70 oil and gas wells have been successfully treated using this technology since 2009. On average, three hydraulic fractures with total 120m3 proppants were placed at strategically selected locations in well, typically several hundred meters apart without sealing equipments. The deepest treatment in oil well 203-19 in Zhongyuan oilfield, using tubing string, was 3692m, and surface pressure reached 88MPa. Significant stimulation results were achieved in these wells. For example, production increased by more than 50 times after stimulation to the gas well XS311H in Sichuan oilfield. The oil well 92-2 in the Zhongyuan oilfield, which had been a dead horizontal well, has been revived using this technology with average oil production of 15 tons per day. Multistage hydrajet-fracturing stimulation shows promising feature for horizontal, vertical, deviated, and even multilateral wells.


2019 ◽  
Vol 48 (1) ◽  
pp. 57-89
Author(s):  
Mareike Schildmann

Abstract This article traces some of the fundamental poetological changes that the traditional crime novel undergoes in the work of the Swiss author Friedrich Glauser at the beginning of the 20th century. The rational-analytical, conservative approach of the criminal novel in the 19th century implied – according to Luc Boltanski – the separation of an epistemologically structured, institutionalized order of “reality” and a chaotic, unruly, unformatted “world” – a separation that is questioned, but reestablished in the dramaturgy of crime and its resolution. By shifting the attention from the logical structure of ‘whodunnit’ to the sensual material culture and “atmosphere” that surrounds actions and people, Glauser’s novels blur these epistemological and ontological boundaries. The article shows how in Die Fieberkurve, the second novel of Glauser’s famous Wachtmeister Studer-series, material and sensual substances develop a specific, powerful dynamic that dissipates, complicates, crosslinks, and confuses the objects and acts of investigation as well as its narration. The material spoors, dust, fibers, fingerprints, intoxicants and natural resources like oil and gas – which lead the investigation from Switzerland to North Africa – trigger a new sensual mode of perception and reception that replaces the reassuring criminological ideal of solution by the logic of “dissolution”. The novel thereby demonstrates the poetic impact of the slogan of modernity: matter matters.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 332
Author(s):  
Hong Yong Sohn ◽  
De-Qiu Fan ◽  
Amr Abdelghany

The development of a novel ironmaking technology based on fine iron ore concentrate in a flash reactor is summarized. The design of potential industrial reactors for flash ironmaking based on the computational fluid dynamics technique is described. Overall, this simulation work has shown that the size of the reactor used in the novel flash ironmaking technology (FIT) can be quite reasonable vis-à-vis the blast furnaces. A flash reactor of 12 m diameter and 35 m height with a single burner operating at atmospheric pressure would produce 1.0 million tons of iron per year. The height can be further reduced by either using multiple burners, preheating the feed gas, or both. The computational fluid dynamics (CFD)-based design of potential industrial reactors for flash ironmaking pointed to a number of features that should be incorporated. The flow field should be designed in such a way that a larger portion of the reactor is used for the reduction reaction but at the same time excessive collision of particles with the wall must be avoided. Further, a large diameter-to-height ratio that still allows a high reduction degree should be used from the viewpoint of decreased heat loss. This may require the incorporation of multiple burners and solid feeding ports.


2021 ◽  
Vol 1064 (1) ◽  
pp. 012059
Author(s):  
R R Gazizov ◽  
A P Chizhov ◽  
V E Andreev ◽  
A V Chibisov ◽  
V V Mukhametshin ◽  
...  

Author(s):  
Jianqiang Yu ◽  
Xiaomin Dong ◽  
Tao Wang ◽  
Zhengmu Zhou ◽  
Yaqin Zhou

This paper presents the damping characteristics of a linear magneto-rheological (MR) damper with dual controllable ducts based on numerical and experimental analysis. The novel MR damper consisting of a dual-rod cylinder system and a MR valve is used to reduce the influences of viscous damping force and improve dynamic range. Driven by the dual-rod cylinder system, MR fluid flows in the MR valve. The pressure drop of the MR valve with dual independent controllable ducts can be controlled by tuning the current of two independent coils. Based on the mathematical model and the finite element method, the damping characteristics of the MR damper is simulated. A prototype is designed and tested on MTS machine to evaluate its damping characteristics. The results show that the working states and damping force of the MR damper can be controlled by the two independent coils.


2013 ◽  
Vol 423-426 ◽  
pp. 2035-2039
Author(s):  
Long Cang Huang ◽  
Yin Ping Cao ◽  
Yang Yu ◽  
Yi Hua Dou

In the process of oil and gas well production, tubing connection stand the axial alternating load during open well, shut well and fluid flow. In order to know premium connection seal ability under the loading, two types of P110 88.9mmx6.45mm premium tubing connections which called A connection and B connection are performed with finite element analysis, in which contact pressures and their the regularities distribution on sealing surface are analyzed. The results show that with the increasing of cycle number, the maximum contact pressures on sealing surface of both A connection and B connection are decreased. The decreasing of the maximum contact pressures on B connection is greater than those on A connection. With the increasing of cycle number of axial alternating compression load, the maximum contact pressure on sealing surface of A connection is decreased, and the maximum contact pressure on sealing surface of B connection remains constant. Compared the result, it shows that the seal ability of A connection is better than B connection under axial alternating tension load, while the seal ability of B connection is better than type A connection under axial alternating compression load.


Sign in / Sign up

Export Citation Format

Share Document