scholarly journals Sensitivity Analysis of Influencing Factors of Supercritical Methane Flow and Heat Transfer in a U-Tube

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5714
Author(s):  
Lingbo Zhu ◽  
Yiping Lu ◽  
Jianfei Tong ◽  
Tianjiao Liang ◽  
Youlian Lu ◽  
...  

Due to the existence of a Dean vortex in a U-tube, the flow and heat transfer process of supercritical methane is complex, and its thermophysical property are greatly influenced by different factors. Based on computational fluid dynamics theory, the numerical simulation of the turbulent flow and heat transfer characteristics of supercritical methane in a U-tube with an inner diameter of 10 mm and a radius of curvature of 27 mm carried out by using the finite volume method. On the basis of verifying the reliability of the model, the influences of inlet mass flux (G), heat flux on the tube wall boundary (q), pressure on the outlet (P), and gravity acceleration factors (g) on heat transfer characteristics were analyzed. The calculation results show that the sensitivity of the effects of G, q, P, and g on the heat transfer coefficient is, from large to small, in the order of P, G, g, and q. Compared with a horizontal straight tube, a U-tube can significantly improve heat transfer in the elbow part, but the presence of the elbow reduces heat transfer in the subsequent straight pipe section. The research in this paper has significance as a reference for the construction of the LNG gasification process.

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhanwei Liu ◽  
Xinyu Li ◽  
Tenglong Cong ◽  
Rui Zhang ◽  
Lingyun Zheng ◽  
...  

The prediction of flow and heat transfer characteristics of liquid sodium with CFD technology is of significant importance for the design and safety analysis of sodium-cooled fast reactor. The accuracies and uncertainties of the CFD models should be evaluated to improve the confidence of the numerical results. In this work, the uncertainties from the turbulent model, boundary conditions, and physical properties for the flow and heat transfer of liquid sodium were evaluated against the experimental data. The results of uncertainty quantization show that the maximum uncertainties of the Nusselt number and friction coefficient occurred in the transition zone from the inlet to the fully developed region in the circular tube, while they occurred near the reattachment point in the backward-facing step. Furthermore, in backward-facing step flow, the maximum uncertainty of temperature migrated from the heating wall to the geometric center of the channel, while the maximum uncertainty of velocity occurred near the vortex zone. The results of sensitivity analysis illustrate that the Nusselt number was negatively correlated with the thermal conductivity and turbulent Prandtl number, while the friction coefficient was positively correlated with the density and Von Karman constant. This work can be a reference to evaluate the accuracy of the standard k-ε model in predicting the flow and heat transfer characteristics of liquid sodium.


Sign in / Sign up

Export Citation Format

Share Document