scholarly journals Uncertainties Analysis on the Prediction of Flow and Heat Transfer of Liquid Sodium with CFD Technology

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhanwei Liu ◽  
Xinyu Li ◽  
Tenglong Cong ◽  
Rui Zhang ◽  
Lingyun Zheng ◽  
...  

The prediction of flow and heat transfer characteristics of liquid sodium with CFD technology is of significant importance for the design and safety analysis of sodium-cooled fast reactor. The accuracies and uncertainties of the CFD models should be evaluated to improve the confidence of the numerical results. In this work, the uncertainties from the turbulent model, boundary conditions, and physical properties for the flow and heat transfer of liquid sodium were evaluated against the experimental data. The results of uncertainty quantization show that the maximum uncertainties of the Nusselt number and friction coefficient occurred in the transition zone from the inlet to the fully developed region in the circular tube, while they occurred near the reattachment point in the backward-facing step. Furthermore, in backward-facing step flow, the maximum uncertainty of temperature migrated from the heating wall to the geometric center of the channel, while the maximum uncertainty of velocity occurred near the vortex zone. The results of sensitivity analysis illustrate that the Nusselt number was negatively correlated with the thermal conductivity and turbulent Prandtl number, while the friction coefficient was positively correlated with the density and Von Karman constant. This work can be a reference to evaluate the accuracy of the standard k-ε model in predicting the flow and heat transfer characteristics of liquid sodium.

2009 ◽  
Vol 13 (4) ◽  
pp. 175-181 ◽  
Author(s):  
Khalid Alammar

Using the standard k-e model, 3-dimensional turbulent flow and heat transfer characteristics in U-tubes are investigated. Uncertainty is approximated using experimental correlations and grid independence study. Increasing the Dean number is shown to intensify a secondary flow within the curved section. The overall Nusselt number for the tube is found to decrease substantially relative to straight tubes, while the overall skin friction coefficient remains practically unaffected. Local skin friction coefficient, Nusselt number, and wall temperature along the tube wall are presented.


Author(s):  
Tarek M. Abdel-Salam

This study presents results for flow and heat transfer characteristics of two-dimensional rectangular impinging jets and three-dimensional circular impinging jets. Flow geometries under consideration are single and multiple impinging jets issued from a plane wall. Both confined and unconfined configurations are simulated. Effects of Reynolds number and the distance between the jets are investigated. Results are obtained with a finite volume computational fluid dynamics (CFD) code. Structured grids are used in all cases of the present study. Turbulence is treated with a two equation k-ε model. Different jet velocities have been examined corresponding to Reynolds numbers of 5,000 to 20,000. Results of the three-dimensional cases show that Reynolds number has no effect on the velocity distribution of the center jet. Results of both two-dimensional and three-dimensional cases show that Reynolds number highly affects the heat transfer and values of the Nusselt number. The maximum Nusselt number was always found at the stagnation point of the center jet.


Author(s):  
Gaoliang Liao ◽  
Xinjun Wang ◽  
Xiaowei Bai ◽  
Ding Zhu ◽  
Jinling Yao

By using the CFX software, the three-dimensional flow and heat transfer characteristics in the cooling duct with pin-fin in the blade trailing edge were numerically simulated. The effects of pin-fin arrangements, Reynolds number, steam superheat degrees, streamwise pin density and convergence angle of the wedge duct on the flow and heat transfer characteristics were analysed. The results show that the Nusselt number on the endwall and pin-fin surfaces as well as the pin-fin row averaged Nusselt number increase with the increasing of Reynolds number, while it decreased with the with the increasing of X/D. The pressure drop increases with the increasing of Reynolds number while decreases with the increasing of X/D in the wedge duct. The degree of superheat has little effect on the pressure loss in the wedge duct. A comprehensive analysis and comparison show that the highest thermal performance is reached in the wedge duct when the value of X/D is 1.5.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Suhil Kiwan ◽  
M. A. Al-Nimr

The convection heat transfer induced by a stretching flat plate has been studied. Similarity conditions are obtained for the boundary layer equations for a flat plate subjected to a power law temperature and velocity variations. It is found that a similarity solution exists only for a linearly stretching plate and only when the plate is isothermal. The analysis shows that three parameters control the flow and heat transfer characteristics of the problem. These parameters are the velocity slip parameter K1, the temperature slip parameter K2, and the Prandtl number. The effect of these parameters on the flow and heat transfer of the problem has been studied and presented. It is found that the slip velocity parameter affect both the flow and heat transfer characteristics of the problem. It is found that the skin friction coefficient decreases with increasing K1 and most of the changes in the skin friction takes place in the range 0<K1<1. A correlation between the skin friction coefficient and K1 and Rex has been found and presented. It is found that cf=23Rex−0.5(K1+0.64)−0.884 for 0<K1<10 with an error of ±0.8%. Other correlations between Nu and K1 and K2 has been found and presented in Eq. 28.


Author(s):  
Emrah Deniz ◽  
I. Yalcin Uralcan

Mini and microchannel applications have become an important and attractive research area during the past decades. For micro systems design purposes, numerical and experimental studies have been conducted on flow and heat transfer characteristics of mini and microchannels and various friction factor and Nusselt number correlations have been proposed. Some researchers have tried to apply conventional tube correlations to mini and micro channels, rather than deriving new correlations. In this study, using commercial CFD software, flow and heat transfer characteristics in laminar and turbulent flow through circular channels are analyzed numerically. The applicability of conventional correlations in calculating the friction factor and Nusselt number is investigated. It is concluded that, in laminar regime conventional correlations can be used to calculate the friction factor for the channel sizes considered. In turbulent regime, however, numerical results for friction factor yielded greater values than those calculated by the conventional correlations. Numerical Nusselt numbers are found to be closer to the conventional values in laminar and turbulent regimes. In turbulent regime, on the other hand, Nusselt number values calculated with the microchannel correlations are determined to be greater than the numerical results and the values calculated with the conventional correlations.


2021 ◽  
pp. 167-167
Author(s):  
Hong Yuan ◽  
Zhao Wang ◽  
Quan Gao ◽  
Ting Fu

In this study, the flow and heat transfer characteristics of the forced pulsating Al2O3/water nanofluid were numerically studied. The pulsating excitation of the nanofluid is provided by the Helmhertz self-excited oscillating cavity. The large eddy simulation method is used to solve the equation, and the local Nusselt number and heat transfer performance index are used to analyze the heat transfer characteristics of the nanofluid in the self-excited oscillation heat exchange tube. In addition, the effect of different downstream tube diameters on heat transfer enhancement is discussed. The research results show that the existence of the countercurrent vortex can increase the disturbance of the near-wall fluid, thereby improving the mixing degree of the near-wall fluid and the central mainstream. As the countercurrent vortex migrates downstream, pulse enhanced heat transfer is realized. Furthermore, it was also found that when the downstream tube diameter d2=1.8d1, the periodic effect of the local Nusselt number of the wall is the best and the heat transfer performance index has the most stable pulsation effect within a pulsation cycle. But when d2=2.0d1, the change curve of heat transfer performance index in a pulsating period is the highest, the maximum value is 3.95.


Author(s):  
Xinjun Wang ◽  
Feng Zhang ◽  
Daren Zheng ◽  
Jun Li

The flow and heat transfer characteristics of mist/air cooling in the rotating ribbed two-pass rectangular channel are numerically investigated using the CFD software ANSYS-CFX. In this article, a comparison in heat transfer performance between the mist/air cooling and the air-only cooling is performed. Additionally, the effect of the initial mist diameter, temperature, velocity and the channel rotation speed on the mist/air cooling performance is analysed. The results show that the droplet flow distance and Nusselt number of the mist/air cooling increase as the initial mist temperature decreases. In addition, as the initial mist diameter decreases, the diameter of mist on the whole channel decreases, resulting in the higher heat transfer, whilst the mist concentration also decreases, leading to the lower heat transfer. Therefore, there is an optimal initial mist diameter which makes the heat transfer performance best. Nevertheless, the droplet movement and heat transfer performance of mist/air cooling are nearly insensitive to the initial mist velocity. It is also noted that the Coriolis force increases with the channel rotation speed, causing the flow deflection becomes more obvious. Consequently, as the channel rotation speed increases, in the first passage the averaged Nusselt number on the trailing wall increases, and that on the leading wall decreases, while the trend in the second passage is reversed.


Sign in / Sign up

Export Citation Format

Share Document