scholarly journals The Use of Well-Log Data in the Geomechanical Characterization of Middle Cambrian Tight Sandstone Formation: A Case Study from Eastern Pomerania, Poland

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6022
Author(s):  
Małgorzata Słota-Valim ◽  
Anita Lis-Śledziona

Geomechanical characterization plays a key role in optimizing the stimulation treatment of tight reservoir formations. Petrophysical models help classify the reservoir rock as the conventional or unconventional type and determine hydrocarbon-saturated zones. Geomechanical and petrophysical models are fundamentally based on well-log data that provide reliable and high-resolution information, and are used to determine various relationships between measured borehole parameters and modeled physical rock properties in 3D space, with the support of seismic data. This paper presents the geomechanical characterization of the Middle Cambrian (Cm2) sediments from Eastern Pomerania, north Poland. To achieve the aim of this study, 1D well-log-based and 3D models based on seismic data of the rocks’ petrophysical, elastic, and strength properties, as well as numerical methods, were used. The analysis of the Middle Cambrian deposits revealed vertical and horizontal heterogeneity in brittleness, the direction of horizontal stresses, and the fracturing pressure required to initiate hydraulic fractures. The most prone to fracturing is the gas-saturated tight sandstones belonging to the Paradoxides Paradoxissimus formation of Cm2, exhibiting the highest brittleness and highest fracturing pressure necessary to stimulate this unconventional reservoir formation.

2020 ◽  
Vol 8 (4) ◽  
pp. T1057-T1069
Author(s):  
Ritesh Kumar Sharma ◽  
Satinder Chopra ◽  
Larry Lines

The discrimination of fluid content and lithology in a reservoir is important because it has a bearing on reservoir development and its management. Among other things, rock-physics analysis is usually carried out to distinguish between the lithology and fluid components of a reservoir by way of estimating the volume of clay, water saturation, and porosity using seismic data. Although these rock-physics parameters are easy to compute for conventional plays, there are many uncertainties in their estimation for unconventional plays, especially where multiple zones need to be characterized simultaneously. We have evaluated such uncertainties with reference to a data set from the Delaware Basin where the Bone Spring, Wolfcamp, Barnett, and Mississippian Formations are the prospective zones. Attempts at seismic reservoir characterization of these formations have been developed in Part 1 of this paper, where the geologic background of the area of study, the preconditioning of prestack seismic data, well-log correlation, accounting for the temporal and lateral variation in the seismic wavelets, and building of robust low-frequency model for prestack simultaneous impedance inversion were determined. We determine the challenges and the uncertainty in the characterization of the Bone Spring, Wolfcamp, Barnett, and Mississippian sections and explain how we overcame those. In the light of these uncertainties, we decide that any deterministic approach for characterization of the target formations of interest may not be appropriate and we build a case for adopting a robust statistical approach. Making use of neutron porosity and density porosity well-log data in the formations of interest, we determine how the type of shale, volume of shale, effective porosity, and lithoclassification can be carried out. Using the available log data, multimineral analysis was also carried out using a nonlinear optimization approach, which lent support to our facies classification. We then extend this exercise to derived seismic attributes for determination of the lithofacies volumes and their probabilities, together with their correlations with the facies information derived from mud log data.


Solid Earth ◽  
2016 ◽  
Vol 7 (3) ◽  
pp. 943-958 ◽  
Author(s):  
Xènia Ogaya ◽  
Juan Alcalde ◽  
Ignacio Marzán ◽  
Juanjo Ledo ◽  
Pilar Queralt ◽  
...  

Abstract. Hontomín (N of Spain) hosts the first Spanish CO2 storage pilot plant. The subsurface characterization of the site included the acquisition of a 3-D seismic reflection and a circumscribed 3-D magnetotelluric (MT) survey. This paper addresses the combination of the seismic and MT results, together with the available well-log data, in order to achieve a better characterization of the Hontomín subsurface. We compare the structural model obtained from the interpretation of the seismic data with the geoelectrical model resulting from the MT data. The models correlate well in the surroundings of the CO2 injection area with the major structural differences observed related to the presence of faults. The combination of the two methods allowed a more detailed characterization of the faults, defining their geometry, and fluid flow characteristics, which are key for the risk assessment of the storage site. Moreover, we use the well-log data of the existing wells to derive resistivity–velocity relationships for the subsurface and compute a 3-D velocity model of the site using the 3-D resistivity model as a reference. The derived velocity model is compared to both the predicted and logged velocity in the injection and monitoring wells, for an overall assessment of the computed resistivity–velocity relationships. The major differences observed are explained by the different resolution of the compared geophysical methods. Finally, the derived velocity model for the near surface is compared with the velocity model used for the static corrections in the seismic data. The results allowed extracting information about the characteristics of the shallow unconsolidated sediments, suggesting possible clay and water content variations. The good correlation of the velocity models derived from the resistivity–velocity relationships and the well-log data demonstrate the potential of the combination of the two methods for characterizing the subsurface, in terms of its physical properties (velocity, resistivity) and structural/reservoir characteristics. This work explores the compatibility of the seismic and magnetotelluric methods across scales highlighting the importance of joint interpretation in near surface and reservoir characterization.


Author(s):  
C. C. Agoha ◽  
A. I. Opara ◽  
O. C. Okeke ◽  
C. N. Okereke ◽  
C. N. Onwubuariri ◽  
...  

Abstract3D geomechanical characterization of "Fuja" field reservoirs, Niger Delta, was carried out to evaluate the mechanical properties of the reservoir rock which will assist in reducing drilling and exploitation challenges faced by operators. Bulk density, sonic, and gamma-ray logs from four wells were integrated with 3D seismic data and core data from the area to estimate the elastic and inelastic rock properties, pore pressure, total vertical stress, as well as maximum and minimum horizontal stresses within the reservoirs from empirical equations, using Petrel and Microsoft Excel software. 3D geomechanical models of these rock properties and cross-plots showing the relationship between the elastic and inelastic properties were also generated. From the results, Young's modulus, bulk modulus, bulk compressibility, shear modulus, Poisson's ratio, and unconfined compressive strength recorded average values of 5.11 GPa, 5.10 GPa, 0.023 GPa−1$$,$$ , 2.39 GPa, 0.39, and 39.0 GPa, respectively, in the sand, and 6.08 GPa, 6.09 Gpa, 0.016 GPa−1 2.84 GPa, 0.42, and 42.3 GPa, respectively, in shale, implying that the sand is less elastic and ductile and will deform before the shale under similar stress conditions. Results also revealed mean pore pressures of 13,248 psi and 15,220 psi in sand and shale units, respectively, mean total vertical stress of 28,193 psi, mean maximum horizontal stress of 26,237 psi, and mean minimum horizontal stress of 21,532 psi. From the geomechanical models, the rock elastic and inelastic parameters revealed higher values around the northeastern and parts of the eastern and western portions of the reservoir implying that mechanical rock deformation will be minimal in these sections of the field compared to other sections during drilling and post-drilling activities. The generated cross-plots indicate that a relationship exists between the elastic rock properties and unconfined compressive strength. Stress estimations within the reservoirs in relation to the obtained elastic and rock strength parameters show that the reservoirs are stable. These results will be invaluable in mitigating exploration and exploitation challenges.


Author(s):  
Richa ◽  
S. P. Maurya ◽  
Kumar H. Singh ◽  
Raghav Singh ◽  
Rohtash Kumar ◽  
...  

AbstractSeismic inversion is a geophysical technique used to estimate subsurface rock properties from seismic reflection data. Seismic data has band-limited nature and contains generally 10–80 Hz frequency hence seismic inversion combines well log information along with seismic data to extract high-resolution subsurface acoustic impedance which contains low as well as high frequencies. This rock property is used to extract qualitative as well as quantitative information of subsurface that can be analyzed to enhance geological as well as geophysical interpretation. The interpretations of extracted properties are more meaningful and provide more detailed information of the subsurface as compared to the traditional seismic data interpretation. The present study focused on the analysis of well log data as well as seismic data of the KG basin to find the prospective zone. Petrophysical parameters such as effective porosity, water saturation, hydrocarbon saturation, and several other parameters were calculated using the available well log data. Low Gamma-ray value, high resistivity, and cross-over between neutron and density logs indicated the presence of gas-bearing zones in the KG basin. Three main hydrocarbon-bearing zones are identified with an average Gamma-ray value of 50 API units at the depth range of (1918–1960 m), 58 API units (2116–2136 m), and 66 API units (2221–2245 m). The average resistivity is found to be 17 Ohm-m, 10 Ohm-m, and 12 Ohm-m and average porosity is 15%, 15%, and 14% of zone 1, zone 2, and zone 3 respectively. The analysis of petrophysical parameters and different cross-plots showed that the reservoir rock is of sandstone with shale as a seal rock. On the other hand, two types of seismic inversion namely Maximum Likelihood and Model-based seismic inversion are used to estimate subsurface acoustic impedance. The inverted section is interpreted as two anomalous zones with very low impedance ranging from 1800 m/s*g/cc to 6000 m/s*g/cc which is quite low and indicates the presence of loose formation.


2018 ◽  
Vol 488 (1) ◽  
pp. 73-95 ◽  
Author(s):  
Luis Miguel Yeste ◽  
Saturnina Henares ◽  
Neil McDougall ◽  
Fernando García-García ◽  
César Viseras

AbstractThe integrated application of advanced visualization techniques – validated against outcrop, core and gamma ray log data – was found to be crucial in characterizing the spatial distribution of fluvial facies and their inherent permeability baffles to a centimetre-scale vertical resolution. An outcrop/behind outcrop workflow was used, combining the sedimentological analysis of a perennial deep braided outcrop with ground-penetrating radar profiles, behind outcrop optical and acoustic borehole imaging, and the analyses of dip tadpoles, core and gamma ray logs. Data from both the surface and subsurface allowed the recognition of two main architectural elements – channels and compound bars – and within the latter to distinguish between the bar head and tail and the cross-bar channel. On the basis of a well-constrained sedimentological framework, a detailed characterization of the gamma ray log pattern in the compound bar allowed several differences between the architectural elements to be identified, despite a general cylindrical trend. A high-resolution tadpole analysis showed that a random pattern prevailed in the channel, whereas in the bar head and tail the tadpoles displayed characteristic patterns that allowed differentiation. The ground-penetrating radar profiles aided the 3D reconstruction of each architectural element. Thus the application of this outcrop/behind outcrop workflow provided a solid database for the characterization of reservoir rock properties from outcrop analogues.


Sign in / Sign up

Export Citation Format

Share Document