scholarly journals Integrated 3D geomechanical characterization of a reservoir: case study of "Fuja" field, offshore Niger Delta, Southern Nigeria

Author(s):  
C. C. Agoha ◽  
A. I. Opara ◽  
O. C. Okeke ◽  
C. N. Okereke ◽  
C. N. Onwubuariri ◽  
...  

Abstract3D geomechanical characterization of "Fuja" field reservoirs, Niger Delta, was carried out to evaluate the mechanical properties of the reservoir rock which will assist in reducing drilling and exploitation challenges faced by operators. Bulk density, sonic, and gamma-ray logs from four wells were integrated with 3D seismic data and core data from the area to estimate the elastic and inelastic rock properties, pore pressure, total vertical stress, as well as maximum and minimum horizontal stresses within the reservoirs from empirical equations, using Petrel and Microsoft Excel software. 3D geomechanical models of these rock properties and cross-plots showing the relationship between the elastic and inelastic properties were also generated. From the results, Young's modulus, bulk modulus, bulk compressibility, shear modulus, Poisson's ratio, and unconfined compressive strength recorded average values of 5.11 GPa, 5.10 GPa, 0.023 GPa−1$$,$$ , 2.39 GPa, 0.39, and 39.0 GPa, respectively, in the sand, and 6.08 GPa, 6.09 Gpa, 0.016 GPa−1 2.84 GPa, 0.42, and 42.3 GPa, respectively, in shale, implying that the sand is less elastic and ductile and will deform before the shale under similar stress conditions. Results also revealed mean pore pressures of 13,248 psi and 15,220 psi in sand and shale units, respectively, mean total vertical stress of 28,193 psi, mean maximum horizontal stress of 26,237 psi, and mean minimum horizontal stress of 21,532 psi. From the geomechanical models, the rock elastic and inelastic parameters revealed higher values around the northeastern and parts of the eastern and western portions of the reservoir implying that mechanical rock deformation will be minimal in these sections of the field compared to other sections during drilling and post-drilling activities. The generated cross-plots indicate that a relationship exists between the elastic rock properties and unconfined compressive strength. Stress estimations within the reservoirs in relation to the obtained elastic and rock strength parameters show that the reservoirs are stable. These results will be invaluable in mitigating exploration and exploitation challenges.

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6022
Author(s):  
Małgorzata Słota-Valim ◽  
Anita Lis-Śledziona

Geomechanical characterization plays a key role in optimizing the stimulation treatment of tight reservoir formations. Petrophysical models help classify the reservoir rock as the conventional or unconventional type and determine hydrocarbon-saturated zones. Geomechanical and petrophysical models are fundamentally based on well-log data that provide reliable and high-resolution information, and are used to determine various relationships between measured borehole parameters and modeled physical rock properties in 3D space, with the support of seismic data. This paper presents the geomechanical characterization of the Middle Cambrian (Cm2) sediments from Eastern Pomerania, north Poland. To achieve the aim of this study, 1D well-log-based and 3D models based on seismic data of the rocks’ petrophysical, elastic, and strength properties, as well as numerical methods, were used. The analysis of the Middle Cambrian deposits revealed vertical and horizontal heterogeneity in brittleness, the direction of horizontal stresses, and the fracturing pressure required to initiate hydraulic fractures. The most prone to fracturing is the gas-saturated tight sandstones belonging to the Paradoxides Paradoxissimus formation of Cm2, exhibiting the highest brittleness and highest fracturing pressure necessary to stimulate this unconventional reservoir formation.


2018 ◽  
Vol 488 (1) ◽  
pp. 73-95 ◽  
Author(s):  
Luis Miguel Yeste ◽  
Saturnina Henares ◽  
Neil McDougall ◽  
Fernando García-García ◽  
César Viseras

AbstractThe integrated application of advanced visualization techniques – validated against outcrop, core and gamma ray log data – was found to be crucial in characterizing the spatial distribution of fluvial facies and their inherent permeability baffles to a centimetre-scale vertical resolution. An outcrop/behind outcrop workflow was used, combining the sedimentological analysis of a perennial deep braided outcrop with ground-penetrating radar profiles, behind outcrop optical and acoustic borehole imaging, and the analyses of dip tadpoles, core and gamma ray logs. Data from both the surface and subsurface allowed the recognition of two main architectural elements – channels and compound bars – and within the latter to distinguish between the bar head and tail and the cross-bar channel. On the basis of a well-constrained sedimentological framework, a detailed characterization of the gamma ray log pattern in the compound bar allowed several differences between the architectural elements to be identified, despite a general cylindrical trend. A high-resolution tadpole analysis showed that a random pattern prevailed in the channel, whereas in the bar head and tail the tadpoles displayed characteristic patterns that allowed differentiation. The ground-penetrating radar profiles aided the 3D reconstruction of each architectural element. Thus the application of this outcrop/behind outcrop workflow provided a solid database for the characterization of reservoir rock properties from outcrop analogues.


2021 ◽  
Vol 2 (4) ◽  
pp. 5081-5093
Author(s):  
Patricio Feijoo Calle ◽  
Elizabeth Brito Verdezoto

En este trabajo se propone una metodología sencilla y de aplicación práctica en campo para la determinación aproximada de la Resistencia a la Compresión Simple (RCS) en rocas, propiedad o característica que es importante en minería, ya que mediante la misma, se ejecutan análisis para la valoración de factores de seguridad y estabilidad y/o posibles sistemas de fortificación en las obras o estructuras mineras, a más de que la caracterización de la RCS es también influyente en el uso de explosivos para la explotación o extracción de materiales de una cantera o mina. Esta estimación se la propone en base a la determinación de las siguientes tres propiedades de la roca, que en esta investigación las denominamos densidad, porosidad y absorción “en mina”. Estas propiedades físicas se las puede obtener de una forma simple, pero metódica y en este trabajo se han ejecutado ensayos sobre un mismo material o roca proveniente de la zona de Cojitambo, provincia del Cañar (Ecuador) y sobre una base de 60 muestras o probetas. Los resultados obtenidos permiten una correlación entre las propiedades antes descritas y la RCS, a más que se ha estructurado una metodología de cálculo para el objetivo planteado.   This work proposes a simple methodology and practical application in the field for the approximate determination of the Unconfined Compressive Strength (UCS) in rocks, property or characteristic that is important in mining, since through it analyzes are carried out to the assessment of security and stability factors and/or possible fortification systems in the works or mining structures, in addition to the characterization of the UCS is also influential in the use of explosives for the exploitation or extraction of materials from a quarry or mine. This estimate is proposed based on the determination of the following three properties of the rock, which in this investigation we call density, porosity and absorption “in mine”. These physical properties can be obtained in a simple, but methodical way and in this work, tests have been carried out on the same material or rock from the Cojitambo area, Cañar province (Ecuador) and on the basis of 60 samples or test tubes. The results obtained allow a correlation between the properties described above and the UCS, in addition to a calculation methodology for the proposed objective.


2021 ◽  
Author(s):  
Shadi Salahshoor

Abstract Leveraging publicly available data is a crucial stepfor decision making around investing in the development of any new unconventional asset.Published reports of production performance along with accurate petrophysical and geological characterization of the areashelp operators to evaluate the economics and risk profiles of the new opportunities. A data-driven workflow can facilitate this process and make it less biased by enabling the agnostic analysis of the data as the first step. In this work, several machine learning algorithms are briefly explained and compared in terms of their application in the development of a production evaluation tool for a targetreservoir. Random forest, selected after evaluating several models, is deployed as a predictive model thatincorporates geological characterization and petrophysical data along with production metricsinto the production performance assessment workflow. Considering the influence of the completion design parameters on the well production performance, this workflow also facilitates evaluation of several completion strategies toimprove decision making around the best-performing completion size. Data used in this study include petrophysical parameters collected from publicly available core data, completion and production metrics, and the geological characteristics of theNiobrara formation in the Powder River Basin. Historical periodic production data are used as indicators of the productivity in a certain area in the data-driven model. This model, after training and evaluation, is deployed to predict the productivity of non-producing regions within the area of interest to help with selecting the most prolific sections for drilling the future wells. Tornado plots are provided to demonstrate the key performance driversin each focused area. A supervised fuzzy clustering model is also utilized to automate the rock quality analyses for identifying the "sweet spots" in a reservoir. The output of this model is a sweet-spot map that is generated through evaluating multiple reservoir rock properties spatially. This map assists with combining all different reservoir rock properties into a single exhibition that indicates the average "reservoir quality"of the formation in different areas. Niobrara shale is used as a case study in this work to demonstrate how the proposed workflow is applied on a selected reservoir formation whit enough historical production data available.


2016 ◽  
Vol 34 ◽  
pp. 269-279 ◽  
Author(s):  
Behzad Mehrgini ◽  
Hossein Memarian ◽  
Maurice B. Dusseault ◽  
Hassan Eshraghi ◽  
Bahman Goodarzi ◽  
...  

Author(s):  
Okoli Emeka Austin ◽  
Okechukwu Ebuka Agbasi ◽  
Onyekuru Samuel ◽  
Sunday Edet Etuk

The cross plotting of rock properties for fluid and lithology discrimination was carried out in a Niger Delta oil field using well data X-26 from a given oil field in the coastal swamp depobelt. The data used for the analysis consisted of suites of logs, including gamma ray, resistivity, sonic and density logs only. The reservoir of interest Horizon 1, was identified using the available suite of logs on the interval where we have low gamma ray, high resistivity and low acoustic impedance specifically at depths 10,424ft (3177.24m) to 10 724ft (3268m). We first obtained other rock attributes from the available logs before cross plotting. The inverse of the interval transit times of the sonic logs were used to generate the compressional velocities and the S-wave data was generated from Castagna´s relation. Employing rock physics algorithm on Hampson Russell software (HRS), rock attributes including Vp/Vs ratio, Lambda-Rho and Mu-Rho were also extracted from the well data. Cross plotting was carried out and Lambda Rho (λρ) versus MuRho (μρ) crossplots proved to be more robust for lithology identification than Vp versus Vs crossplots, while λρ Versus Poisson impedance was more robust than Vp/Vs versus Acoustic impedance for fluid discrimination, as well as identification of gas sands. The crossplots were consistent with Rock Physics Templates (RPTs). This implies the possibility of further using the technique on data points of inverted sections of various AVO attributes within the field in areas not penetrated by wells within the area covered by the seismic.


Sign in / Sign up

Export Citation Format

Share Document