scholarly journals A Review on the Thermal-Hydraulic Performance and Optimization of Compact Heat Exchangers

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6056
Author(s):  
Gaoliang Liao ◽  
Zhizhou Li ◽  
Feng Zhang ◽  
Lijun Liu ◽  
Jiaqiang E

Heat exchangers play an important role in power, the chemical industry, petroleum, food and many other industrial productions, while compact heat exchangers are more favored in industrial applications due to their high thermal efficiency and small size. This paper summarizes the research status of different types of compact heat exchangers, especially the research results of heat transfer and pressure drop of printed circuit heat exchangers, so that researchers can have an overall understanding of the development of compact heat exchangers and get the required information quickly. In addition, this paper summarizes and analyzes several main working fluids selected in compact heat exchangers, and puts forward some discussions and suggestions on the selection of working fluids. Finally, according to the existing published literature, the performance evaluation indexes of compact heat exchangers are summarized and compared, which is convenient for developers and researchers to better grasp the design direction.

Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1406 ◽  
Author(s):  
Hannes Fugmann ◽  
Eric Laurenz ◽  
Lena Schnabel

Enhanced heat transfer surfaces allow more energy-efficient, compact and lightweight heat exchangers. Within this study, a method for comparing different types of enhancement and different geometries with multiple objectives is developed in order to evaluate new and existing enhancement designs. The method’s objectives are defined as energy, volume, and mass efficiency of the enhancement. They are given in dimensional and non-dimensional form and include limitations due to thermal conductivity within the enhancement. The transformation to an explicit heat transfer rate per dissipated power, volume, or mass is described in detail. The objectives are visualized for different Reynolds numbers to locate beneficial operating conditions. The multi-objective problem is further on reduced to a single-objective problem by means of weighting factors. The implementation of these factors allows a straightforward performance evaluation based on a rough estimation of the energy, volume, and mass importance set by a decision maker.


2005 ◽  
Author(s):  
D. K. Tafti

The paper describes two- and three-dimensional computer simulations which are used to study fundamental flow and thermal phenomena in multilouvered fins used for air-side heat transfer enhancement in compact heat exchangers. Results pertaining to flow transition, thermal wake interference, and fintube junction effects are presented. It is shown that a Reynolds number based on flow path rather than louver pitch is more appropriate in defining the onset of transition, and characteristic frequencies in the louver bank scale better with a global length scale such as fin pitch than with louver pitch or thickness. With the aid of computer experiments, the effect of thermal wakes is quantified on the heat capacity of the fin as well as the heat transfer coefficient, and it is established that experiments which neglect accounting for thermal wakes can introduce large errors in the measurement of heat transfer coefficients. Further, it is shown that the geometry of the louver in the vicinity of the tube surface has a large effect on tube heat transfer and can have a substantial impact on the overall heat capacity.


2008 ◽  
Author(s):  
H. Shokouhmand ◽  
M. Moghaddami ◽  
H. Jafari

Fins are widely utilized in many industrial applications for example, fins are used in air cooled finned tube heat exchangers like car radiators, heat rejection devices, refrigeration systems and in condensing central heat exchangers. In this paper, heat transfer inside the fin system composed of a primary rectangular fin with a number of rectangular fins (secondary fins), which are attached on its surface, is modeled and analyzed numerically. The length of the secondary fins decreases linearly from the base of the primary fin to its tip. This modified triangular fin is a kind of improved tree fin networks. The effectiveness of the modified triangular fin is compared with the effectiveness of triangular fin which is calculated analytically. The results show that adding secondary fins increases the effectiveness of triangular fin significantly. Also, it is found that increasing the number of secondary fins in a constant length of primary fin will increase the effectiveness. In addition, by comparing the results it can be concluded that by shortening the length of the primary fin in modified triangular fin, the effectiveness will increase significantly to the contrary of the triangular fin, so smaller heat exchangers can be built by using the modified triangular fin. It is found that in a constant length of primary fin, there is an optimum thickness of secondary fins which maximize the effectiveness of the fin.


Heat exchangers are prominent industrial applications where engineering science of heat transfer and Mass transfer occurs. It is a contrivance where transfer of energy occurs to get output in the form of energy transfer. This paper aims at finding a solution to improve the thermal performance in a heat exchanger by using passive method techniques. This experimental and numerical analysis deals with finding the temperature outlets of cold and hot fluid for different mass flow rates and also pressure drop in the tube and the annular side by adding an elliptical leaf strip in the pipe at various angles. The single elliptical leaf used in experiment has major to minor axes ratios as 2:1 and distance of 50 mm between two leaves are arranged at different angular orientations from 0 0 to 1800 with 100 intervals. Since it’s not possible to find the heat transfer rates and pressure drops at every orientation of elliptical leaf so a generalized regression neural network (GRNN) prediction tool is used to get outputs with given inputs to avoid experimentation. GRNN is a statistical method of determining the relationship between dependent and independent variables. The values obtained from experimentation and GRNN nearly had precise values to each other. This analysis is a small step in regard with encomiastic approach for enhancement in performance of heat exchangers


2001 ◽  
Author(s):  
Arash Saidi ◽  
Daniel Eriksson ◽  
Bengt Sundén

Abstract This paper presents a discussion and comparison of some heat exchanger types readily applicable to use as intercoolers in gas turbine systems. The present study concerns a heat duty of the intercooler for a gas turbine of around 17 MW power output. Four different types of air-water heat exchangers are considered. This selection is motivated because of the practical aspects of the problem. Each configuration is discussed and explained, regarding advantages and disadvantages. The available literature on the pressure drop and heat transfer correlations is used to determine the thermal-hydraulic performance of the various heat exchangers. Then a comparison of the intercooler core volume, weight, pressure drop is presented.


2019 ◽  
Vol 37 (2) ◽  
pp. 131-155 ◽  
Author(s):  
Willem Faes ◽  
Steven Lecompte ◽  
Zaaquib Yunus Ahmed ◽  
Johan Van Bael ◽  
Robbe Salenbien ◽  
...  

AbstractIn many industries and processes, heat exchangers are of vital importance as they are used to transfer heat from one fluid to another. These fluids can be corrosive to heat exchangers, which are usually made of metallic materials. This paper illustrates that corrosion is an important problem in the operation of heat exchangers in many environments, for which no straightforward answer exists. Corrosion failures of heat exchangers are common, and corrosion often involves high maintenance or repair costs. In this review, an overview is given of what is known on corrosion in heat exchangers. The different types of corrosion encountered in heat exchangers and the susceptible places in the devices are discussed first. This is combined with an overview of failure analyses for each type of corrosion. Next, the effect of heat transfer on corrosion and the influence of corrosion on the thermohydraulic performances are discussed. Finally, the prevention and control of corrosion is tackled. Prevention goes from general design considerations and operation guidelines to the use of cathodic and anodic protection.


Sign in / Sign up

Export Citation Format

Share Document