scholarly journals An Enhanced Distributed Voltage Regulation Scheme for Radial Feeder in Islanded Microgrid

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6092 ◽  
Author(s):  
Muhammad Zahid Khan ◽  
Chaoxu Mu ◽  
Salman Habib ◽  
Waleed Alhosaini ◽  
Emad M. Ahmed

Even the simplest version of the distribution networks face challenges such as maintaining load voltage and system frequency stability and at the same time minimizing the circulating reactive power in grid-forming nodes. As the consumers at the far end of the radial distribution network face serious voltage fluctuations and deviations once the load varies. Therefore, this paper presents an enhanced distributed control strategy to restore the load voltage magnitude and to realize power-sharing proportionally in islanded microgrids. This proposed study considers the voltage regulation at the load node as opposed to the inverter terminal. At the same time, a supervisory control layer is put on to observe and correct the load voltage and system frequency deviations. This presented method is aimed at replacing paralleled inverter control methods hitherto used. Stability analysis using system-wide methodical small-signal models, the MATLAB/Simulink, and experimental results obtained with conventional and proposed control schemes verify the effectiveness of the proposed methodology.

2016 ◽  
Vol 19 (1) ◽  
pp. 5-19
Author(s):  
Phuong Minh Le ◽  
Huy Minh Nguyen ◽  
Hoa Thi Xuan Pham ◽  
Tho Quang Tran

This paper presents a new load sharing technique for parallel-connected three-phase inverters in Standelone Microgrid. The paper proposed improvements droop controller to accurate load share by ratio with rated power of the inverter. In addition, the proposed scheme ensures reduced load voltage droop due to the load and droop. In the paper, the active power and reactive power are divided by voltage regulation under reference voltage in conditions of stark difference between line impedances, In addition the paper presents the ability to overcome the disadvantages of traditional droop scheme. The proposed model is simulated by Matlab-Simulink for 3 parallel-connected threephase inverters. The simulation results proved the technical soundness and advantages of the proposed in comparision with a tradition scheme even if the output impedance is resistance reactance in power sharing and load voltage drop reduce problems.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1121
Author(s):  
Rozmysław Mieński ◽  
Przemysław Urbanek ◽  
Irena Wasiak

The paper includes the analysis of the operation of low-voltage prosumer installation consisting of receivers and electricity sources and equipped with a 3-phase energy storage system. The aim of the storage application is the management of active power within the installation to decrease the total power exchanged with the supplying network and thus reduce energy costs borne by the prosumer. A solution for the effective implementation of the storage system is presented. Apart from the active power management performed according to the prosumer’s needs, the storage inverter provides the ancillary service of voltage regulation in the network according to the requirements of the network operator. A control strategy involving algorithms for voltage regulation without prejudice to the prosumer’s interest is described in the paper. Reactive power is used first as a control signal and if the required voltage effect cannot be reached, then the active power in the controlled phase is additionally changed and the Energy Storage System (ESS) loading is redistributed in phases in such a way that the total active power set by the prosumer program remains unchanged. The efficiency of the control strategy was tested by means of a simulation model in the PSCAD/EMTDC program. The results of the simulations are presented.


2018 ◽  
Vol 7 (2.28) ◽  
pp. 362
Author(s):  
Raed A. Shalwala

One of the most important operational requirements for any electrical power network for both distribution and transmission level is voltage control. Many studies have been carried out to improve or develop new voltage control techniques to facilitate safe connection of distributed generation. In Saudi Arabia, due to environmental, economic and development perspectives, a wide integration of photovoltaic (PV) genera-tion in distribution network is expected in the near future. This development in the network may cause voltage regulation problems due to the interaction with the existing conventional control system. In a previous paper, a control system has been described using a fuzzy logic control to set the on-line tap changer for the primary substation. In this paper a new control system is proposed for controlling the power factor of individual PV invertors based on observed correlation between net active and reactive power at each connection. A fuzzy logic control has been designed to alter the power factor for the remote invertors from the secondary substation to keep the feeder voltage within the permissible limits. In order to confirm the validity of the proposed method, simulations are carried out for a realistic distribution network with real data for load and solar radiation. Results showing the performance of the new control method are presented and discussed.  


2020 ◽  
Vol 14 (7) ◽  
pp. 1366-1377
Author(s):  
Mohsen Eskandari ◽  
Li Li ◽  
Mohammad H. Moradi ◽  
Pierluigi Siano ◽  
Frede Blaabjerg

2019 ◽  
Vol 8 (3) ◽  
pp. 2482-2489

Capacitors are widely used in distribution networks for energy loss reduction, reactive power compensation, voltage regulation, and for system capacity release. However, it’s important that the system is designed initially, and capacitors are applied in correct magnitude and at right node to achieve best results. The most important task for distribution engineer is to efficiently simulate the system at design stage and later apply optimum capacitance injection. The work presented in this paper proposes a cost minimization algorithm using a unique mathematical model along with Monty carlo simulation to choose optimal value of capacitors, both fixed and switching based on total minimum cost algorithm.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1802 ◽  
Author(s):  
Chong Cao ◽  
Zhouquan Wu ◽  
Bo Chen

In this paper, a vehicle–grid integration (VGI) control strategy for radial power distribution networks is presented. The control schemes are designed at both microgrid level and distribution level. At the VGI microgrid level, the available power capacity for electric vehicle (EV) charging is optimally allocated for charging electric vehicles to meet charging requirements. At the distribution grid level, a distributed voltage compensation algorithm is designed to recover voltage violation when it happens at a distribution node. The voltage compensation is achieved through a negotiation between the grid-level agent and VGI microgrid agents using the alternating direction method of multipliers. In each negotiation round, individual agents pursue their own objectives. The computation can be carried out in parallel for each agent. The presented VGI control schemes are simulated and verified in a modified IEEE 37 bus distribution system. The simulation results are presented to show the effectiveness of the VGI control algorithms and the effect of algorithm parameters on the convergence of agent negotiation.


Sign in / Sign up

Export Citation Format

Share Document