scholarly journals Analytical Solution of Problems about the Radiative and Radiative–Conductive Stationary Heat Transfer in a Medium with an Arbitrary Dependence of the Scattering and Absorption on Frequency Boundary Conditions

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6339
Author(s):  
Eugene Shamparov ◽  
Sergey Rode ◽  
Anatoly Bugrimov ◽  
Inna Zhagrina

We defined a method for the analytical solution of problems on stationary radiative and radiative–conductive heat transfer in a medium with an arbitrary frequency dependence of absorption and scattering near its boundary. We obtained formulas for the heat conductance of the remote surface and the thickness of the radiative–conductive relaxation of the medium. We determined characteristics of radiant heat transfer from the medium to free space such as the radiation spectrum, the radiation temperature and the medium outer boundary temperature. In addition, we solved the problem on the radiative–conductive heat transfer from one of two parallel surfaces to another with a medium between them.

2012 ◽  
Vol 701 ◽  
pp. 386-406 ◽  
Author(s):  
G. F. Lane-Serff ◽  
S. D. Sandbach

AbstractA model for steady flow in a ventilated space containing a heat source is developed, taking account of the main heat transfers at the upper and lower boundaries. The space has an opening at low level, allowing cool ambient air to enter the space, and an opening near the ceiling, allowing warm air to leave the space. The flow is driven by the temperature contrast between the air inside and outside the space (natural ventilation). Conductive heat transfer through the ceiling and radiant heat transfer from the ceiling to the floor are incorporated into the model, to investigate how these heat transports affect the flow and temperature distribution within the space. In the steady state, a layer of warm air occupies the upper part of the space, with the lower part of the space filled with cooler air (although this is warmer than the ambient air when the radiant transfer from ceiling to floor is included). Suitable scales are derived for the heat transfers, so that their relative importance can be characterized. Explicit relationships are found between the height of the interface, the opening area and the relative size of the heat transfers. Increasing heat conduction leads to a lowering of the interface height, while the inclusion of the radiant transfer tends to increase the interface height. Both of these effects are relatively small, but the effect on the temperatures of the layers is significant. Conductive heat transfer through the upper boundary leads to a significant lowering of the temperature in the space as a proportion of the injected heat flux is taken out of the space by conduction rather than advection. Radiative transfer from the ceiling to floor results in the lower layer becoming warmer than the ambient air. The results of the model are compared with full-scale laboratory results and a more complex unsteady model, and are shown to give results that are much more accurate than models which ignore the heat transfers.


2016 ◽  
Vol 289 ◽  
pp. 371-380 ◽  
Author(s):  
Alexander Yu. Chebotarev ◽  
Andrey E. Kovtanyuk ◽  
Gleb V. Grenkin ◽  
Nikolai D. Botkin ◽  
Karl-Heinz Hoffmann

1967 ◽  
Vol 89 (4) ◽  
pp. 300-308 ◽  
Author(s):  
R. H. Edwards ◽  
R. P. Bobco

Two approximate methods are presented for making radiant heat-transfer computations from gray, isothermal dispersions which absorb, emit, and scatter isotropically. The integrodifferential equation of radiant transfer is solved using moment techniques to obtain a first-order solution. A second-order solution is found by iteration. The approximate solutions are compared to exact solutions found in the literature of astrophysics for the case of a plane-parallel geometry. The exact and approximate solutions are both expressed in terms of directional and hemispherical emissivities at a boundary. The comparison for a slab, which is neither optically thin nor thick (τ = 1), indicates that the second-order solution is accurate to within 10 percent for both directional and hemispherical properties. These results suggest that relatively simple techniques may be used to make design computations for more complex geometries and boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document