scholarly journals Magnetic Coupling-Based Battery Impedance Measurement Method

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7490
Author(s):  
Chushan Li ◽  
Junjie Mao ◽  
Qiang Wu ◽  
Yibo Deng ◽  
Jiande Wu ◽  
...  

The battery impedance is an important indicator of battery health status. In this paper, a magnetic coupling-based impedance measurement method for electrochemical batteries is proposed. Without affecting the energy injection stage, the designed suppression resistance can minimize the influence of the primary circuit response, and the under-damped oscillation waveform containing the battery impedance information can be directly obtained on the primary inductance. The change of the mutual inductance value within a certain range will not affect the measurement results. Therefore, the measurement system has high stability and robustness. By utilizing the discrete Fourier transform (DFT)-based algorithm to calculate the damped oscillation parameters, the battery impedance is accurately derived from the calculated attenuation coefficient and damped oscillation frequency. The accuracy of this method under different coupling parameters is analyzed and verified by simulation and experiment on a Li-ion battery, which could be employed to estimate the state of charge (SOC).

2021 ◽  
Vol 267 ◽  
pp. 02039
Author(s):  
Yan Rong ◽  
Linyuan Guo ◽  
Yunyan Peng ◽  
Jianhua Yang ◽  
Dong Jin

The closed flash point is an important indicator in the detection of organic heat carrier. In this paper, based on the Pensky-Martin flash point (closed) measurement method, the closed flash point of the organic heat carrier is measured with an automatic closed cup flash point meter. The factors that may affect the accuracy of the measurement result during the measurement process are analyzed, and the uncertainty is determined. Through the analysis of the established uncertainty component sources, the repeatability measurement of the organic heat carrier, the temperature sensor, the pressure sensor, and the numerical rounding based on the standard, the results of the closed flash point determination of the organic heat carrier are obtained. The synthetic uncertainty and the relative expanded uncertainty are evaluated to improve the reliability of the measurement results of the closed flash point of the organic heat carrier and provide a reference for the quality control of the organic heat carrier.


2020 ◽  
Vol 140 (3) ◽  
pp. 140-147
Author(s):  
Koji Takechi ◽  
Takeshi Yokoi ◽  
Hiroaki Kakigano

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 46152-46165
Author(s):  
Gjorgji Nusev ◽  
Dani Juricic ◽  
Miran Gaberscek ◽  
Joze Moskon ◽  
Pavle Boskoski

Author(s):  
Fenghui Lian ◽  
Qingchang Tan ◽  
Siyuan Liu

A method for measuring block thicknesses is proposed by the machine vision measurement. Equations of the measuring base plane and the light plane are formed by calibration. Then, the equation of the light strip image, that is, the image of the intersection between the base plane and light one, is established by the projection relation. Equation of the image of the light strip on the measured plane can be determined by the fitting. Since the light strip on the measuring base plane is parallel to one on the measured plane, the thickness of the measuring block is measured by using the two equations. The experiment evaluates the measurement accuracy of the measurement method and analyzes the influence of some factors on the measurement results.


2008 ◽  
Vol 41-42 ◽  
pp. 401-406 ◽  
Author(s):  
Xian Hua Liu ◽  
Roshun Paurobally ◽  
Jie Pan

Structural health monitoring or damage detection has long been a research interest for its great potential for life safety and economic benefits to the industrialized world. Structural vibration behavior is an essential signature of the integrity of structures and hence has been used for damage detection. Structural vibration impedance by way of piezoceramic patch excitation offers a local damage detection technique. It has been known that temperature change has adverse effects on the measured impedance result and can complicate the damage analysis. It is believed that one way of temperature influence on vibration is through adding thermal prestress to the structure. Prestress affects vibration in different ways on different structures and application problems. For the impedance method, prestress comes not only from temperature change but also from other sources such as wind, gravity and working load. This paper deals with prestress effects in the context of local vibration behavior of structures. A theoretical analysis is given on how prestress affects the vibration. Experimental impedance measurement results for piezoceramic patch excited vibration of simple structures such as plates under prestress are presented.


2017 ◽  
Vol 6 (2) ◽  
pp. 279-284 ◽  
Author(s):  
László Hegymegi ◽  
János Szöllősy ◽  
Csaba Hegymegi ◽  
Ádám Domján

Abstract. Geomagnetic observatories use classical theodolites equipped with single-axis flux-gate magnetometers known as declination–inclination magnetometers (DIM) to determine absolute values of declination and inclination angles. This instrument and the measurement method are very reliable but need a lot of handwork and experience. The authors developed and built a non-magnetic theodolite which gives all measurement data in digital form. Use of this instrument significantly decreases the possibility of observation errors and minimises handwork. The new instrument is presented in this paper together with first measurement results in comparison to the classical DIM.


ACTA IMEKO ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 198
Author(s):  
Mar Lar Win

<p class="Abstract">In the gravimetric volume measurement method, the factor <em>Z</em> is generally used to facilitate an easy conversion from the apparent mass obtained using a balance to the liquid volume. The uncertainty of the measurement used for the liquid volume can be divided into two specific contributions: one from the components related to the mass measurements and one from those related to the mass-to-volume conversion. However, some ISO standards and calibration guides have suggested that the uncertainty due to the factor <em>Z</em> is generally neglected in the uncertainty calculation pertaining to gravimetric volume measurement. This paper describes the combined effects of the density of the water, the density of the reference weights, and the air buoyancy on the uncertainty of factor <em>Z</em> in terms of how they subsequently affect the uncertainty of the measurement results.</p>


2021 ◽  
Vol 64 (6) ◽  
pp. 1895-1905
Author(s):  
Dachen Wang ◽  
Zhe Feng ◽  
Di Cui

HighlightsA handheld device was developed for automatic on-site measurement of fruit firmness.The prototype device achieved better performance than a typical commercial penetrometer.Two commonly used firmness-related parameters could be predicted based on the prototype readings.The distribution and changes of firmness could be visualized based on 3D models of the prototype readings.Abstract. Firmness is an important indicator of fruit quality. The devices for on-site fruit firmness measurement need to be portable, low-cost, lightweight, reliable, and flexible. Existing portable devices can provide firmness-related parameters, but their measurement results cannot be converted to each other. Their measurement results are also susceptible to operator error due to the manual measurement process. To solve this problem, a prototype handheld device was developed based on sensing fruit resistance to achieve automatic on-site firmness measurement of fruit with edible peel and provide commonly used firmness-related parameters. The prototype’s precision was verified by analyzing the repeatability and reproducibility of the measurement results with four Shore hardness blocks. The relative standard deviations (RSDs) of the results obtained by the same operator were less than 0.61%, and there was no significant difference among the results obtained by different operators (p &lt; 0.05), which indicated that the prototype could provide reliable measurement results. A case study of peaches was performed, and the results showed that (1) the prototype had better performance than a commercial penetrometer, (2) two commonly used firmness-related parameters could be predicted based on regression models between a texture analyzer and the prototype readings (R2P = 0.908 and RMSEP = 4.191 N for maximum force; R2P = 0.923 and RMSEP = 1.613 N mm-1 for initial slope), (3) changes in the prototype readings for peaches during growth corresponded with the growth characteristics, and (4) the distribution and changes of peach firmness over time could be visualized based on 3D models of the prototype readings. Keywords: Automatic, Fruit firmness, Handheld device, High precision, Peach.


Sign in / Sign up

Export Citation Format

Share Document