scholarly journals Physics-Based Deep Learning for Flow Problems

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7760
Author(s):  
Yubiao Sun ◽  
Qiankun Sun ◽  
Kan Qin

It is the tradition for the fluid community to study fluid dynamics problems via numerical simulations such as finite-element, finite-difference and finite-volume methods. These approaches use various mesh techniques to discretize a complicated geometry and eventually convert governing equations into finite-dimensional algebraic systems. To date, many attempts have been made by exploiting machine learning to solve flow problems. However, conventional data-driven machine learning algorithms require heavy inputs of large labeled data, which is computationally expensive for complex and multi-physics problems. In this paper, we proposed a data-free, physics-driven deep learning approach to solve various low-speed flow problems and demonstrated its robustness in generating reliable solutions. Instead of feeding neural networks large labeled data, we exploited the known physical laws and incorporated this physics into a neural network to relax the strict requirement of big data and improve prediction accuracy. The employed physics-informed neural networks (PINNs) provide a feasible and cheap alternative to approximate the solution of differential equations with specified initial and boundary conditions. Approximate solutions of physical equations can be obtained via the minimization of the customized objective function, which consists of residuals satisfying differential operators, the initial/boundary conditions as well as the mean-squared errors between predictions and target values. This new approach is data efficient and can greatly lower the computational cost for large and complex geometries. The capacity and generality of the proposed method have been assessed by solving various flow and transport problems, including the flow past cylinder, linear Poisson, heat conduction and the Taylor–Green vortex problem.

2022 ◽  
pp. 1559-1575
Author(s):  
Mário Pereira Véstias

Machine learning is the study of algorithms and models for computing systems to do tasks based on pattern identification and inference. When it is difficult or infeasible to develop an algorithm to do a particular task, machine learning algorithms can provide an output based on previous training data. A well-known machine learning model is deep learning. The most recent deep learning models are based on artificial neural networks (ANN). There exist several types of artificial neural networks including the feedforward neural network, the Kohonen self-organizing neural network, the recurrent neural network, the convolutional neural network, the modular neural network, among others. This article focuses on convolutional neural networks with a description of the model, the training and inference processes and its applicability. It will also give an overview of the most used CNN models and what to expect from the next generation of CNN models.


2020 ◽  
Author(s):  
Thomas R. Lane ◽  
Daniel H. Foil ◽  
Eni Minerali ◽  
Fabio Urbina ◽  
Kimberley M. Zorn ◽  
...  

<p>Machine learning methods are attracting considerable attention from the pharmaceutical industry for use in drug discovery and applications beyond. In recent studies we have applied multiple machine learning algorithms, modeling metrics and in some cases compared molecular descriptors to build models for individual targets or properties on a relatively small scale. Several research groups have used large numbers of datasets from public databases such as ChEMBL in order to evaluate machine learning methods of interest to them. The largest of these types of studies used on the order of 1400 datasets. We have now extracted well over 5000 datasets from CHEMBL for use with the ECFP6 fingerprint and comparison of our proprietary software Assay Central<sup>TM</sup> with random forest, k-Nearest Neighbors, support vector classification, naïve Bayesian, AdaBoosted decision trees, and deep neural networks (3 levels). Model performance <a>was</a> assessed using an array of five-fold cross-validation metrics including area-under-the-curve, F1 score, Cohen’s kappa and Matthews correlation coefficient. <a>Based on ranked normalized scores for the metrics or datasets all methods appeared comparable while the distance from the top indicated Assay Central<sup>TM</sup> and support vector classification were comparable. </a>Unlike prior studies which have placed considerable emphasis on deep neural networks (deep learning), no advantage was seen in this case where minimal tuning was performed of any of the methods. If anything, Assay Central<sup>TM</sup> may have been at a slight advantage as the activity cutoff for each of the over 5000 datasets representing over 570,000 unique compounds was based on Assay Central<sup>TM</sup>performance, but support vector classification seems to be a strong competitor. We also apply Assay Central<sup>TM</sup> to prospective predictions for PXR and hERG to further validate these models. This work currently appears to be the largest comparison of machine learning algorithms to date. Future studies will likely evaluate additional databases, descriptors and algorithms, as well as further refining methods for evaluating and comparing models. </p><p><b> </b></p>


2018 ◽  
Vol 10 (10) ◽  
pp. 1513 ◽  
Author(s):  
Julio Duarte-Carvajalino ◽  
Diego Alzate ◽  
Andrés Ramirez ◽  
Juan Santa-Sepulveda ◽  
Alexandra Fajardo-Rojas ◽  
...  

This work presents quantitative prediction of severity of the disease caused by Phytophthora infestans in potato crops using machine learning algorithms such as multilayer perceptron, deep learning convolutional neural networks, support vector regression, and random forests. The machine learning algorithms are trained using datasets extracted from multispectral data captured at the canopy level with an unmanned aerial vehicle, carrying an inexpensive digital camera. The results indicate that deep learning convolutional neural networks, random forests and multilayer perceptron using band differences can predict the level of Phytophthora infestans affectation on potato crops with acceptable accuracy.


Author(s):  
Manu C. ◽  
Vijaya Kumar B. P. ◽  
Naresh E.

In daily realistic activities, security is one of the main criteria among the different machines like IOT devices, networks. In these systems, anomaly detection is one of the issues. Anomaly detection based on user behavior is very essential to secure the machines from the unauthorized activities by anomaly user. Techniques used for an anomaly detection is to learn the daily realistic activities of the user, and later it proactively detects the anomalous situation and unusual activities. In the IOT-related systems, the detection of such anomalous situations can be fine-tuned with minor and major erroneous conditions to the machine learning algorithms that learn the activities of a user. In this chapter, neural networks, with multiple hidden layers to detect the different situation by creating an environment with random anomalous activities to the machine, are proposed. Using deep learning for anomaly detection would help in enhancing the accuracy and speed.


2021 ◽  
pp. PP. 18-50
Author(s):  
Ahmed A. Elngar ◽  
◽  
◽  
◽  
◽  
...  

Computer vision is one of the fields of computer science that is one of the most powerful and persuasive types of artificial intelligence. It is similar to the human vision system, as it enables computers to recognize and process objects in pictures and videos in the same way as humans do. Computer vision technology has rapidly evolved in many fields and contributed to solving many problems, as computer vision contributed to self-driving cars, and cars were able to understand their surroundings. The cameras record video from different angles around the car, then a computer vision system gets images from the video, and then processes the images in real-time to find roadside ends, detect other cars, and read traffic lights, pedestrians, and objects. Computer vision also contributed to facial recognition; this technology enables computers to match images of people’s faces to their identities. which these algorithms detect facial features in images and then compare them with databases. Computer vision also play important role in Healthcare, in which algorithms can help automate tasks such as detecting Breast cancer, finding symptoms in x-ray, cancerous moles in skin images, and MRI scans. Computer vision also contributed to many fields such as image classification, object discovery, motion recognition, subject tracking, and medicine. The rapid development of artificial intelligence is making machine learning more important in his field of research. Use algorithms to find out every bit of data and predict the outcome. This has become an important key to unlocking the door to AI. If we had looked to deep learning concept, we find deep learning is a subset of machine learning, algorithms inspired by structure and function of the human brain called artificial neural networks, learn from large amounts of data. Deep learning algorithm perform a task repeatedly, each time tweak it a little to improve the outcome. So, the development of computer vision was due to deep learning. Now we'll take a tour around the convolution neural networks, let us say that convolutional neural networks are one of the most powerful supervised deep learning models (abbreviated as CNN or ConvNet). This name ;convolutional ; is a token from a mathematical linear operation between matrixes called convolution. CNN structure can be used in a variety of real-world problems including, computer vision, image recognition, natural language processing (NLP), anomaly detection, video analysis, drug discovery, recommender systems, health risk assessment, and time-series forecasting. If we look at convolutional neural networks, we see that CNN are similar to normal neural networks, the only difference between CNN and ANN is that CNNs are used in the field of pattern recognition within images mainly. This allows us to encode the features of an image into the structure, making the network more suitable for image-focused tasks, with reducing the parameters required to set-up the model. One of the advantages of CNN that it has an excellent performance in machine learning problems. So, we will use CNN as a classifier for image classification. So, the objective of this paper is that we will talk in detail about image classification in the following sections.


2021 ◽  
Author(s):  
Cedric G. Fraces ◽  
Hamdi Tchelepi

Abstract We present our progress on the application of physics informed deep learning to reservoir simulation problems. The model is a neural network that is jointly trained to respect governing physical laws and match boundary conditions. The methodology is hereby used to simulate a 2-phase immiscible transport problem (Buckley-Leverett). The model is able to produce an accurate physical solution both in terms of shock and rarefaction and honors the governing partial differential equation along with initial and boundary conditions. We test various hypothesis (uniform and non-uniform initial conditions) and show that with the proper implementation of physical constraints, a robust solution can be trained within a reasonable amount of time and iterations. We revisit some of the limitations presented in previous work [1] and further the applicability of this method in a forward, pure hyperbolic setup. We also share some practical findings on the application of physics informed neural networks (PINN). We review various network architectures presented in the literature and show tips that helped improve their convergence and accuracy. The proposed methodology is a simple and elegant way to instill physical knowledge to machine-learning algorithms. This alleviates the two most significant shortcomings of machine-learning algorithms: the requirement for large datasets and the reliability of extrapolation. The principles presented can be generalized in innumerable ways in the future and should lead to a new class of algorithms to solve both forward and inverse physical problems.


Landslides can easily be tragic to human life and property. Increase in the rate of human settlement in the mountains has resulted in safety concerns. Landslides have caused economic loss between 1-2% of the GDP in many developing countries. In this study, we discuss a deep learning approach to detect landslides. Convolutional Neural Networks are used for feature extraction for our proposed model. As there was no source of an exact and precise data set for feature extraction, therefore, a new data set was built for testing the model. We have tested and compared this work with our proposed model and with other machine-learning algorithms such as Logistic Regression, Random Forest, AdaBoost, K-Nearest Neighbors and Support Vector Machine. Our proposed deep learning model produces a classification accuracy of 96.90% outperforming the classical machine-learning algorithms.


2020 ◽  
Vol 2020 ◽  
Author(s):  
Chaya Liebeskind ◽  
Shmuel Liebeskind

In this study, we address the interesting task of classifying historical texts by their assumed period of writ-ing. This task is useful in digital humanity studies where many texts have unidentified publication dates.For years, the typical approach for temporal text classification was supervised using machine-learningalgorithms. These algorithms require careful feature engineering and considerable domain expertise todesign a feature extractor to transform the raw text into a feature vector from which the classifier couldlearn to classify any unseen valid input. Recently, deep learning has produced extremely promising re-sults for various tasks in natural language processing (NLP). The primary advantage of deep learning isthat human engineers did not design the feature layers, but the features were extrapolated from data witha general-purpose learning procedure. We investigated deep learning models for period classification ofhistorical texts. We compared three common models: paragraph vectors, convolutional neural networks (CNN) and recurrent neural networks (RNN), and conventional machine-learning methods. We demon-strate that the CNN and RNN models outperformed the paragraph vector model and the conventionalsupervised machine-learning algorithms. In addition, we constructed word embeddings for each timeperiod and analyzed semantic changes of word meanings over time.


Author(s):  
Mário Pereira Véstias

Machine learning is the study of algorithms and models for computing systems to do tasks based on pattern identification and inference. When it is difficult or infeasible to develop an algorithm to do a particular task, machine learning algorithms can provide an output based on previous training data. A well-known machine learning model is deep learning. The most recent deep learning models are based on artificial neural networks (ANN). There exist several types of artificial neural networks including the feedforward neural network, the Kohonen self-organizing neural network, the recurrent neural network, the convolutional neural network, the modular neural network, among others. This article focuses on convolutional neural networks with a description of the model, the training and inference processes and its applicability. It will also give an overview of the most used CNN models and what to expect from the next generation of CNN models.


2020 ◽  
Author(s):  
Thomas R. Lane ◽  
Daniel H. Foil ◽  
Eni Minerali ◽  
Fabio Urbina ◽  
Kimberley M. Zorn ◽  
...  

<p>Machine learning methods are attracting considerable attention from the pharmaceutical industry for use in drug discovery and applications beyond. In recent studies we have applied multiple machine learning algorithms, modeling metrics and in some cases compared molecular descriptors to build models for individual targets or properties on a relatively small scale. Several research groups have used large numbers of datasets from public databases such as ChEMBL in order to evaluate machine learning methods of interest to them. The largest of these types of studies used on the order of 1400 datasets. We have now extracted well over 5000 datasets from CHEMBL for use with the ECFP6 fingerprint and comparison of our proprietary software Assay Central<sup>TM</sup> with random forest, k-Nearest Neighbors, support vector classification, naïve Bayesian, AdaBoosted decision trees, and deep neural networks (3 levels). Model performance <a>was</a> assessed using an array of five-fold cross-validation metrics including area-under-the-curve, F1 score, Cohen’s kappa and Matthews correlation coefficient. <a>Based on ranked normalized scores for the metrics or datasets all methods appeared comparable while the distance from the top indicated Assay Central<sup>TM</sup> and support vector classification were comparable. </a>Unlike prior studies which have placed considerable emphasis on deep neural networks (deep learning), no advantage was seen in this case where minimal tuning was performed of any of the methods. If anything, Assay Central<sup>TM</sup> may have been at a slight advantage as the activity cutoff for each of the over 5000 datasets representing over 570,000 unique compounds was based on Assay Central<sup>TM</sup>performance, but support vector classification seems to be a strong competitor. We also apply Assay Central<sup>TM</sup> to prospective predictions for PXR and hERG to further validate these models. This work currently appears to be the largest comparison of machine learning algorithms to date. Future studies will likely evaluate additional databases, descriptors and algorithms, as well as further refining methods for evaluating and comparing models. </p><p><b> </b></p>


Sign in / Sign up

Export Citation Format

Share Document