scholarly journals Implementation and Control of Six-Phase Induction Motor Driven by a Three-Phase Supply

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7798
Author(s):  
Mohamed I. Abdelwanis ◽  
Essam M. Rashad ◽  
Ibrahim B. M. Taha ◽  
Fathalla F. Selim

This paper is interested in implementing and controlling a modified six-phase induction motor (MSPIM) when fed from a three-phase supply either via an inverter or with a direct grid connection loaded by a centrifugal pump. The main aims of using the MSPIM are to enhance motor reliability and reduce torque pulsation. A three-to-six phase transformer has been designed, implemented, and employed to enable the SPIM to be driven from a three-phase supply. It is preferable to use the three-to-six phase transformers integrated with three-phase inverter on using the six-phase inverter to generate lower values of harmonics and lower steady-state error of speed and reduce the starting current and because also it isolates the primary circuit from the secondary, and the cost will be lower compared to the design of a special six-phase inverter. Dynamic models of SPIM, three-to-six phase transformer, and three-phase variable speed drive are derived. Then, a scalar (V/F) closed-loop control of SPIM is employed, and the results are discussed. Fine-tuning of PID controllers is used to keep the motor speed tracking the reference value. A low pass filter is connected to reduce the ripple of voltage and current waveforms. An experimental setup has been built and implemented to check the possibility of controlling SPIM by a variable speed drive system fed from a three-to-six phase transformer. It is found that the proposed method can be effectively used to drive the SPIM from a three-phase supply.

2017 ◽  
Vol 53 (16) ◽  
pp. 1139-1140 ◽  
Author(s):  
M. Gonzalez‐Ramirez ◽  
C.A. Cruz‐Villar

2016 ◽  
Vol 78 (6-2) ◽  
Author(s):  
Jamal Abd Ali ◽  
M A Hannan ◽  
Azah Mohamed

Optimization techniques are increasingly used in research to improve the control of three-phase induction motor (TIM). Indirect field-oriented control (IFOC) scheme is employed to improve the efficiency and enhance the performance of variable speed control of TIM drives. The space vector pulse width modulation (SVPWM) technique is used for switching signals in a three-phase bridge inverter to minimize harmonics in the output signals of the inverter. In this paper, a novel scheme based on particle swarm optimization (PSO) algorithm is proposed to improve the variable speed control of IFOC in TIM. The PSO algorithm is used to search the best values of parameters of proportional-integral (PI) controller (proportional gain (kp) and integral gain (ki)) for each speed controller and voltage controller to improve the speed response for TIM. An optimal PI controller-based objective function is also used to tune and minimize the mean square error (MSE). Results of all tests verified the robustness of the PSO-PI controller for speed response in terms of damping capability, fast settling time, steady state error, and transient responses under different conditions of mechanical load and speed.


2011 ◽  
Vol 128-129 ◽  
pp. 25-29
Author(s):  
Bo Fan ◽  
Xing Li ◽  
Jie Xin Pu ◽  
Jian Wei Ma ◽  
Ju Wei Zhang

In order to solve the problem of integration saturation drift and hardship in compensation quantity calculation exist in rotor flux observation of induction motor, a rotor flux observer based on nonlinear quadrature double compensation method is presented in this paper. The quantity of compensation is determined dynamically according to the quadrature level between flux and back electromotive force. Through the order change of compensation and low-pass filter, quick response of flux when signal frequency leaps is realized. The simulation result shows that the method can improve the flux waveform, realize the accurate and swift track of flux.


2015 ◽  
Vol 22 (3) ◽  
pp. 82-89
Author(s):  
Xiao-Yan Xu ◽  
Janusz Mindykowski ◽  
Tomasz Tarasiuk ◽  
Chen Cheng

Abstract An improved harmonic detection method based on average arithmetic is proposed. According to the research results, the designed solution uses an LPF (low-pass-filter) and a mean value module connected in series instead of the conventional mean value module, and simultaneously, a three-phase voltage phase-locked module instead of commonly used PLL (phase lock loop) module is applied in order to reduce the influence caused by three-phase distorted voltage and rapid variation of load. The experimental results show that the application of this solution leads to increase in the accuracy of harmonics detection for distorted three-phase voltage and rapid variation of load.


ELKHA ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 54
Author(s):  
Eska Rizqi Naufal ◽  
Gigih Priyandoko ◽  
Fachrudin Hunaini

The 3 phase induction motor is a reliable and strong motor also has cheap price. However induction motor are also vulnerable, from the result of survey conducted by Electric Power Research Institute (EPRI), there are 41% cases of damage occur in the bearing caused by working environment condition, bearing age, and several other factors. Bearing fault is not easily to identified, with applying the data extraction method using the Discrete Wavelet Transform (DWT) and the K-Medoids clustering method will facilitate the identification process. The extraction method will pass the data in the form of current signals into the digital filter (Low Pass Filter and High Pass Filter) to be mapped into the region of frequency and time simultaneously, and clustering method will group data based on certain characteristics. Based on the clustering tests that have been done on the 3 phase induction motor current signal data with 3 bearing conditions, the Discrete Wavelet Transformation with mother wavelet bior1.1 decomposition level 2 and K-Medoids produce an accuracy rate of 86.8%.


2018 ◽  
Vol 18 (1) ◽  
pp. 35 ◽  
Author(s):  
Rofiatul Izah ◽  
Subiyanto Subiyanto ◽  
Dhidik Prastiyanto

Synchronous Reference Frame Phase Locked Loop (SRF PLL) has been widely used for synchronization three-phase grid-connected photovoltaic (PV) system. On the grid fault, SRF PLL distorted by negative sequence component and grid harmonic that caused an error in estimating parameter because of ripple and oscillation. This work combined SRF PLL with Dual Second Order Generalized Integrator (DSOGI) and filter to minimize ripple and minimize oscillation in the phase estimation and frequency estimation. DSOGI was used for filtering and obtaining the 90o shifted versions from the vαβ signals. These signals (vαβ) were generated from three phase grid voltage signal using Clarke transform. The vαβ signal was the inputs to the positive-sequence calculator (PSC). The positive-sequence vαβ was transformed to the dq synchronous reference frame and became an input to SRF-PLL to create the estimation frequency. This estimation frequency from SRF PLL was filtered by the low-pass filter to decrease grid harmonic. Moreover, the output of low-pass filter was a frequency adaptive. The performance of DSOGI PLL with filter is compared with DSOGI PLL, SRF PLL, and IEEE standard 1547(TM)-2003. The improvement of DSOGI PLL with filter gave better performances than DSOGI PLL and SRF PLLbecause it minimized ripples and oscillations in the phase and frequency estimations.


Sign in / Sign up

Export Citation Format

Share Document