scholarly journals Optimal Degree of Hybridization for Spark-Ignited Engines with Optional Variable Valve Timings

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8151
Author(s):  
Andyn Omanovic ◽  
Norbert Zsiga ◽  
Patrik Soltic ◽  
Christopher Onder

The electric hybridization of vehicles with an internal combustion engine is an effective measure to reduce CO2 emissions. However, the identification of the dimension and the sufficient complexity of the powertrain parts such as the engine, electric machine, and battery is not trivial. This paper investigates the influence of the technological advancement of an internal combustion engine and the sizing of all propulsion components on the optimal degree of hybridization and the corresponding fuel consumption reduction. Thus, a turbocharged and a naturally aspirated engine are both modeled with the additional option of either a fixed camshaft or a fully variable valve train. All models are based on data obtained from measurements on engine test benches. We apply dynamic programming to find the globally optimal operating strategy for the driving cycle chosen. Depending on the engine type, a reduction in fuel consumption by up to 32% is achieved with a degree of hybridization of 45%. Depending on the degree of hybridization, a fully variable valve train reduces the fuel consumption additionally by up to 9% and advances the optimal degree of hybridization to 50%. Furthermore, a sufficiently high degree of hybridization renders the gearbox obsolete, which permits simpler vehicle concepts to be derived. A degree of hybridization of 65% is found to be fuel optimal for a vehicle with a fixed transmission ratio. Its fuel economy diverges less than 4% from the optimal fuel economy of a hybrid electric vehicle equipped with a gearbox.

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2750
Author(s):  
Andyn Omanovic ◽  
Norbert Zsiga ◽  
Patrik Soltic ◽  
Christopher Onder

Spark-ignited internal combustion engines are known to exhibit a decreased brake efficiency in part-load operation. Similarly to cylinder deactivation, the x-stroke operation presented in this paper is an adjustable form of skip-cycle operation. It is an effective measure to increase the efficiency of an internal combustion engine, which has to be equipped with a variable valve train to enable this feature. This paper presents an optimization procedure for the exhaust valve timings applicable to any valid stroke operation number greater than four. In the first part, the gas spring operation, during which all gas exchange valves are closed, is explained, as well as how it affects the indicated efficiency and the blow-by mass flow. In the second part, a simulation model with variable valve timings, parameterized with measurement data obtained on the engine test, is used to find the optimal valve timings. We show that in 12-stroke operation and with a cylinder load of 5 Nm, an indicated efficiency of 34.3% is achieved. Preloading the gas spring with residual gas prevents oil suction and thus helps to reduce hydrocarbon emissions. Measurements of load variations in 4-, 8-, and 12-stroke operations show that by applying an x-stroke operation, the indicated efficiency remains high and the center of combustion remains optimal in the range of significantly lower torque outputs.


2019 ◽  
Vol 11 (11) ◽  
pp. 168781401988625 ◽  
Author(s):  
Lijun Hao ◽  
Chunjie Wang ◽  
Hang Yin ◽  
Chunxiao Hao ◽  
Haohao Wang ◽  
...  

In order to estimate the light-duty vehicle fuel economy at high-altitude areas, the coast-down tests of a passenger car on level road were conducted at different elevations, and the coast-down resistance coefficients were calculated. Furthermore, a fuel economy model for a light-duty vehicle adopting backward simulation method was developed, and it mainly consists of vehicle dynamic model, internal combustion engine model, transmission model, and differential model. The internal combustion engine model consists of the brake-specific fuel consumption maps as functions of engine torque and engine speed, and the brake-specific fuel consumption map near sea level was constructed based on engine experimental data, and the brake-specific fuel consumption maps at high altitudes were calculated by GT-Power Modeling of the internal combustion engine. The fuel consumption rate was calculated from the brake-specific fuel consumption maps and brake power and used to calculate the fuel economy of the light-duty vehicle. The model predicted fuel consumption data met well with the test results, and the model prediction errors are within 5%.


2020 ◽  
Author(s):  
Augusto César Teixeira Malaquias ◽  
Nilton Antonio Diniz Netto ◽  
José Guilherme Coelho Baêta ◽  
Alysson Fernandes Teixeira ◽  
Sérgio Augusto Passos Costa

Author(s):  
Sameer Magar ◽  
Hong Guo ◽  
Patricia Iglesias

Lubricants play a vital role in improving energy efficiency and reducing friction in any type of frictional contact. The automotive industry is facing strict regulations in terms of emissions from the petroleum fuel. Strict government norms are compelling automotive manufacturers to push their technological limits to improve the fuel economy and emissions from their vehicles. Improving the efficiency of the engine will ultimately result in saving fuel thus improving the fuel economy of the engine. Concerning energy consumption; 33% of the fuel energy developed by combustion of fuel is dissipated to overcome the friction losses in the vehicle [1]. Out of this, 11.56% of the total fuel energy is lost in engine system. The distribution of this 11.56% fuel energy lost in engine system includes 3.5% consumed in bearings, 1.16% in pumping and hydraulic viscous losses, 5.2% and 1.73% consumed in piston assembly and valve train respectively [1]. If we consider losses only in bearings, piston assembly and valve train it results in 10.4% energy loss as compared to the total energy generated by the fuel. In the last decade, ionic liquids have shown potential as lubricants and lubricant additives. This study focusses on the use ionic liquids as additives for friction and wear reduction resulting in energy conservation in an internal combustion engine. In this work, the contact between piston ring and cylinder wall was simulated using a ball-on-flat tribometer. Most of the engine oils are based on mineral oils and results showed that adding 1% of the ionic liquid to mineral oil reduced friction loses by 27% [2], which corresponds to conserving 2.8% of fuel energy if just the frictional loss in piston assembly, valve train and bearing are considered. In the United States, there are 253 million vehicles on average consuming 678 gallons of fuel per year [3], the use of ionic liquid can save an estimated 4.8 billion gallons of fuel per year, which results in estimated saving of 11.56 billion dollars.


2020 ◽  
Vol 210 ◽  
pp. 01005
Author(s):  
Alexander Maksimenko ◽  
Natalia Buryanova

The article examines the issue of the influence of a hydrocarbon fuel activator on the fuel consumption by the internal combustion engine when the activator is installed in the fuel system when the car is running. The analysis of the previously performed work was carried out, hereupon the installation of a hydrocarbon fuel activator was identified as the parameter influencing the fuel consumption of a vehicle. The indicators that require accounting the rate of fuel consumption when the hydrocarbon fuel activator is installed, have been determined.


Author(s):  
Akane Ishizuka ◽  
Narimasa Ueda ◽  
Yoshitaka Morimoto ◽  
Akio Hayashi ◽  
Yoshiyuki Kaneko ◽  
...  

Abstract Since shifting to electric vehicles as a countermeasure against global warming is not always easy to complete, the hybrid car has been considered as another possible solution. However, based on the calculation of total CO2 emissions, all hybrid cars which will constitute 90% of all cars are expected to be equipped with an internal combustion engine even after 2030. Therefore, further efficiency improvement of the internal combustion engine is necessary. One of the key factors is the variable valve timing and variable lift with the 3D cam mechanism. Since conventional technology uses a complicated link mechanism and servo motor control, this leads a problem to set into small cars or motorcycles because they cannot afford to install the variable valve timing and variable lift with cam mechanism. To solve this problem, a cam shape with a three-dimensional curved surface has been proposed. In order to create this shape, the machining method for non-axisymmetric curved surface turning (NACS-Turning) is required. To build the new system, our research group has proposed a new machining method using a driven type rotary tool and a linear motor driven moving table to enable to achieve NACS-Turning. In this new system, a new tool rotation axis (B axis) is adopted to synchronize its rotational position with the rotational position of the spindle (C axis) holding the workpiece, the X1-, X2-, and Z-Axis positions in total. In this paper, the new hardware configuration is proposed to overcome the present machining accuracy.


2020 ◽  
Vol 17 ◽  
pp. 00078
Author(s):  
Dmitry Maryin ◽  
Andrei Glushchenko ◽  
Anton Khokhlov ◽  
Evgeny Proshkin ◽  
Rail Mustyakimov

To improve the power and fuel and economic performance of a gasoline internal combustion engine, it has been proposed to improve the insulating properties of the piston by forming a heat-insulating coating on the working surfaces of the piston head with a thickness of 25...30 μm using the microarc oxidation method. Comparative results of engine tests are carried out, which showed that an engine equipped with pistons with a heat-insulating coating on the working surfaces of the head increases power by 5.3 % and reduces hourly fuel consumption by 5.7 % compared to an engine equipped with standard pistons.


2013 ◽  
Vol 315 ◽  
pp. 423-427
Author(s):  
Halim Razali ◽  
Kamaruzzaman Sopian ◽  
Ali Sohif Mat

Estimation of the life cycle cost (LCC) for a hydrogen internal combustion engine (H2ICE) that uses hydrogen as an alternative fuel by forecasting a financial investment plan for a period of five years (n = 5). This is influenced by the interest rate of 10% (i = 10). The effect of Annual Operating Cost and salvage value in the LCC for H2ICE would give impact on the cost of investment and economic growth in the long term. The result shows the brake specific fuel consumption to achieve 14% savings for grams per kilowatt hour for the engine (G + H2) compared to the engine (G). The operation of H2ICE in the first year would be increased by 22%, the reason is due to the cost of equipment, maintenance and purchase of new components. However, the percentage of operation cost for the following five to ten year of Present worth (PW) is reduced to 0.36% in the fourth year (n = 4) within the interest rate of 10%. The return of initial investment in the capital-first cost (FC) is to occur at the beginning of the fifth year (n = 5) of H2ICE operations. The cost of savings for the next five years would become more profitable reaching 37% reduction in cost compared to conventional fuel consumption


Sign in / Sign up

Export Citation Format

Share Document