scholarly journals Model-based estimation of light-duty vehicle fuel economy at high altitude

2019 ◽  
Vol 11 (11) ◽  
pp. 168781401988625 ◽  
Author(s):  
Lijun Hao ◽  
Chunjie Wang ◽  
Hang Yin ◽  
Chunxiao Hao ◽  
Haohao Wang ◽  
...  

In order to estimate the light-duty vehicle fuel economy at high-altitude areas, the coast-down tests of a passenger car on level road were conducted at different elevations, and the coast-down resistance coefficients were calculated. Furthermore, a fuel economy model for a light-duty vehicle adopting backward simulation method was developed, and it mainly consists of vehicle dynamic model, internal combustion engine model, transmission model, and differential model. The internal combustion engine model consists of the brake-specific fuel consumption maps as functions of engine torque and engine speed, and the brake-specific fuel consumption map near sea level was constructed based on engine experimental data, and the brake-specific fuel consumption maps at high altitudes were calculated by GT-Power Modeling of the internal combustion engine. The fuel consumption rate was calculated from the brake-specific fuel consumption maps and brake power and used to calculate the fuel economy of the light-duty vehicle. The model predicted fuel consumption data met well with the test results, and the model prediction errors are within 5%.

2013 ◽  
Vol 315 ◽  
pp. 423-427
Author(s):  
Halim Razali ◽  
Kamaruzzaman Sopian ◽  
Ali Sohif Mat

Estimation of the life cycle cost (LCC) for a hydrogen internal combustion engine (H2ICE) that uses hydrogen as an alternative fuel by forecasting a financial investment plan for a period of five years (n = 5). This is influenced by the interest rate of 10% (i = 10). The effect of Annual Operating Cost and salvage value in the LCC for H2ICE would give impact on the cost of investment and economic growth in the long term. The result shows the brake specific fuel consumption to achieve 14% savings for grams per kilowatt hour for the engine (G + H2) compared to the engine (G). The operation of H2ICE in the first year would be increased by 22%, the reason is due to the cost of equipment, maintenance and purchase of new components. However, the percentage of operation cost for the following five to ten year of Present worth (PW) is reduced to 0.36% in the fourth year (n = 4) within the interest rate of 10%. The return of initial investment in the capital-first cost (FC) is to occur at the beginning of the fifth year (n = 5) of H2ICE operations. The cost of savings for the next five years would become more profitable reaching 37% reduction in cost compared to conventional fuel consumption


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8151
Author(s):  
Andyn Omanovic ◽  
Norbert Zsiga ◽  
Patrik Soltic ◽  
Christopher Onder

The electric hybridization of vehicles with an internal combustion engine is an effective measure to reduce CO2 emissions. However, the identification of the dimension and the sufficient complexity of the powertrain parts such as the engine, electric machine, and battery is not trivial. This paper investigates the influence of the technological advancement of an internal combustion engine and the sizing of all propulsion components on the optimal degree of hybridization and the corresponding fuel consumption reduction. Thus, a turbocharged and a naturally aspirated engine are both modeled with the additional option of either a fixed camshaft or a fully variable valve train. All models are based on data obtained from measurements on engine test benches. We apply dynamic programming to find the globally optimal operating strategy for the driving cycle chosen. Depending on the engine type, a reduction in fuel consumption by up to 32% is achieved with a degree of hybridization of 45%. Depending on the degree of hybridization, a fully variable valve train reduces the fuel consumption additionally by up to 9% and advances the optimal degree of hybridization to 50%. Furthermore, a sufficiently high degree of hybridization renders the gearbox obsolete, which permits simpler vehicle concepts to be derived. A degree of hybridization of 65% is found to be fuel optimal for a vehicle with a fixed transmission ratio. Its fuel economy diverges less than 4% from the optimal fuel economy of a hybrid electric vehicle equipped with a gearbox.


2014 ◽  
Vol 875-877 ◽  
pp. 1804-1811
Author(s):  
Halim Razali ◽  
Kamaruzzaman Sopian ◽  
Sohif Mat

Combustion performance from the use of hydrogen generated through chemical activity between aluminum and hydrochloric acid that can be applied as an alternative fuel source for internal combustion engine needs is the aim of this paper. Applications of a mixture of hydrogen with petrol can be used to increase the combustion performance especially on the effect of sfc. Sfc is the parameter used in stoichiometric ratio for the combustion process. The methodology includes the production process of hydrogen, interpretation of reaction rates and the effect on specific fuel consumption (sfc) for internal combustion engine. This results showed 0.7412 mole of hydrogen can be generated through the chemical reaction between 20 grams of aluminium with 250 ml of hydrochloric acid or 1 kg of aluminium can produce 37.06 moles which is equivalent to 108 grams hydrogen. Fuel economy of each load test was 6.5% (L0), 18.5% (L1) and 30% (L2) in grams per kilowatt hour. The rate used in each test load was 100 g/kWh (L0), 80.77 g/kWh (L1), and 112 g/kWh (L2) compared to petrol of 107 g/kWh (L0), 99.23 g/kWh (L1) and 162 g/kWh (L2). Results from the combustion of petrol, air and hydrogen in proportion of 100 g/kWh, 80.77 g/kWh and 112 g/kWh was able to improve the quality of combustion compared to the normal fuel consumption. The total use of sfc achieved 20.3% savings in grams per kilowatt hour for the engine (G + H2) with an average value of 98 g/kWh compared to the engine (G) with an average value of 123 g/kWh.


2021 ◽  
Author(s):  
Sita M. Syal ◽  
Karen Eggerman ◽  
Margot Gerritsen

In this paper, we define True Decommissioning as the removal of internal combustion engine light-duty vehicles from the road permanently, quickly, and equitably. We discuss each interlinked component of True Decommissioning. We then outline the next steps for implementation, including engaging stakeholders, evaluating economic costs and benefits, and understanding policies and programs. Finally, we present a table of unanswered research questions in this area, including those our research group is working on. We welcome discussions on how we can achieve True Decommissioning and work together to facilitate an equitable transition to clean light-duty vehicle mobility for all.


2015 ◽  
Vol 787 ◽  
pp. 756-760 ◽  
Author(s):  
A. Kirthivasan ◽  
J. Amitesh Jain ◽  
Akhilnandh Ramesh ◽  
D. Ebenezer

Alternative fuel source such as ethanol possess great potential to replace conventional fuels such as petrol and diesel. There has been a great increase in the usage of such fuels in the developing world, of late, with many countries having already mandated the usage of ethanol blended petrol. In developing countries, two stroke internal combustion engines continue to be used for powering agricultural implements and auto rickshaws. This paper presents the experimental investigations carried out on the usage of petrol blended with different proportions of ethanol by volume (5%, and 10%) as a fuel for an unmodified and used 100cc two stroke SI engine. The objectives of the experimental investigations are to determine whether ethanol blended petrol can be used as a suitable fuel for the commonly used two stroke internal combustion engine without any modifications. Tests were carried out on the engine, with petrol as the fuel initially and then with ethanol blended petrol with increasing proportion of ethanol. The total fuel consumption rate seemed to increase upon addition of ethanol. However, the brake specific fuel consumption remained fairly constant. The fact that brake specific fuel consumption varies only marginally indicate that ethanol can be used as a substitute for petrol, as a fuel.


Author(s):  
Dmitry Sergeevich Kobyakov ◽  
Oleg Stanislavovich Khvatov

The variants of transformerless power topologies of ship diesel generator sets of variable rotational speed are considered. A power circuit of a diesel generator set of variable rotational speed on the basis of an active voltage rectifier and a buffer energy store, which has the highest efficiency in terms of weight and size and performance, is proposed. A block diagram of a control system for semiconductor converters as part of a diesel generator set of variable rotational speed is presented. The control system of the active voltage rectifier is implemented upon the principle of regulation according to the position of the generalized voltage vector of the network. In order to increase the energy efficiency of the inverter diesel generator set there has been developed the algorithm for smooth control of the rotational speed of the internal combustion engine using setting mechanism of suspend mode. The proposed algorithm (gradient descent method) is borrowed from the neural network technologies and allows calculating the rotation frequency of the internal combustion engine shaft corresponding to the minimum specific fuel consumption when operating at the current fractional load. In MatLab Simulink computer environment a simulation model of a variable-frequency diesel generator set based on active voltage rectifier was developed and transients were studied. The results of simulation modeling of the dynamic modes of the load switching have been presented, taking into account its size and nature; the indicators of the specific fuel consumption of the internal combustion engine as part of a diesel generator set of variable rotational speed are presented, as well. Using a variable-speed diesel generator set based on an active voltage rectifier has been proved to allow ensuring the required quality indicators of the generated electricity when the internal combustion engine is operating at lower energy-efficient rotation frequencies in the fractional load mode.


2020 ◽  
Vol 210 ◽  
pp. 01005
Author(s):  
Alexander Maksimenko ◽  
Natalia Buryanova

The article examines the issue of the influence of a hydrocarbon fuel activator on the fuel consumption by the internal combustion engine when the activator is installed in the fuel system when the car is running. The analysis of the previously performed work was carried out, hereupon the installation of a hydrocarbon fuel activator was identified as the parameter influencing the fuel consumption of a vehicle. The indicators that require accounting the rate of fuel consumption when the hydrocarbon fuel activator is installed, have been determined.


2020 ◽  
Vol 17 ◽  
pp. 00078
Author(s):  
Dmitry Maryin ◽  
Andrei Glushchenko ◽  
Anton Khokhlov ◽  
Evgeny Proshkin ◽  
Rail Mustyakimov

To improve the power and fuel and economic performance of a gasoline internal combustion engine, it has been proposed to improve the insulating properties of the piston by forming a heat-insulating coating on the working surfaces of the piston head with a thickness of 25...30 μm using the microarc oxidation method. Comparative results of engine tests are carried out, which showed that an engine equipped with pistons with a heat-insulating coating on the working surfaces of the head increases power by 5.3 % and reduces hourly fuel consumption by 5.7 % compared to an engine equipped with standard pistons.


Sign in / Sign up

Export Citation Format

Share Document