scholarly journals Design of Static Output Feedback and Structured Controllers for Active Suspension with Quarter-Car Model

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8231
Author(s):  
Manbok Park ◽  
Seongjin Yim

This paper presents a method to design active suspension controllers for a 7-Degree-of-Freedom (DOF) full-car (FC) model from controllers designed with a 2-DOF quarter-car (QC) one. A linear quadratic regulator (LQR) with 7-DOF FC model has been widely used for active suspension control. However, it is too hard to implement the LQR in real vehicles because it requires so many state variables to be precisely measured and has so many elements to be implemented in the gain matrix of the LQR. To cope with the problem, a 2-DOF QC model describing vertical motions of sprung and unsprung masses is adopted for controller design. LQR designed with the QC model has a simpler structure and much smaller number of gain elements than that designed with the FC one. In this paper, several controllers for the FC model are derived from LQR designed with the QC model. These controllers can give equivalent or better performance than that designed with the FC model in terms of ride comfort. In order to use available sensor signals instead of using full-state feedback for active suspension control, LQ static output feedback (SOF) and linear quadratic Gaussian (LQG) controllers are designed with the QC model. From these controllers, observer-based controllers for the FC model are also derived. To verify the performance of the controllers for the FC model derived from LQR and LQ SOF ones designed with the QC model, frequency domain analysis is undertaken. From the analysis, it is confirmed that the controllers for the FC model derived from LQ and LQ SOF ones designed with the QC model can give equivalent performance to those designed with the FC one in terms of ride comfort.

Author(s):  
Sharifah Munawwarah Syed Mohd Putra ◽  
Fitri Yakub ◽  
Mohamed Sukri Mat Ali ◽  
Noor Fawazi Mohd Noor Rudin ◽  
Zainudin A. Rasid ◽  
...  

2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Ivan Cvok ◽  
Mario Hrgetić ◽  
Matija Hoić ◽  
Joško Deur ◽  
Davor Hrovat ◽  
...  

Abstract Autonomous vehicles (AVs) give the driver opportunity to engage in productive or pleasure-related activities, which will increase AV’s utility and value. It is anticipated that many AVs will be equipped with active suspension extended with road disturbance preview capability to provide the necessary superior ride comfort resulting in almost steady work or play platform. This article deals with assessing the benefits of introducing various active suspensions and related linear quadratic regulator (LQR) controls in terms of improving the work/leisure ability. The study relies on high-performance shaker rig-based tests of a group of 44 drivers involved in reading/writing, drawing, and subjective ride comfort rating tasks. The test results indicate that there is a threshold of root-mean-square vertical acceleration, below which the task execution performance is similar to that corresponding to standstill conditions. For the given, relatively harsh road disturbance profile, only the fully active suspension with road preview control can suppress the vertical acceleration below the above critical superior comfort threshold. However, when adding an active seat suspension, the range of chassis suspension types for superior ride comfort is substantially extended and can include semi-active suspension and even passive suspension in some extreme cases that can, however, lead to excessive relative motion between the seat and the vehicle floor. The design requirements gained through simulation analysis, and extended with cost and packaging requirements related to passenger car applications, have guided design of two active seat suspension concepts applicable to the shaker rig and production vehicles.


1994 ◽  
Vol 23 (6) ◽  
pp. 421-430 ◽  
Author(s):  
T. Iwasaki ◽  
R.E. Skelton ◽  
J.C. Geromel

2012 ◽  
Author(s):  
Arfah Syahida Mohd Nor ◽  
Hazlina Selamat ◽  
Ahmad Jais Alimin

This paper presents the design of an active suspension control of a two–axle railway vehicle using an optimized linear quadratic regulator. The control objective is to minimize the lateral displacement and yaw angle of the wheelsets when the vehicle travels on straight and curved tracks with lateral irregularities. In choosing the optimum weighting matrices for the LQR, the Particle Swarm Optimization (PSO) method has been applied and the results of the controller performance with weighting matrices chosen using this method is compared with the commonly used, trial and error method. The performance of the passive and active suspension has also been compared. The results show that the active suspension system performs better than the passive suspension system. For the active suspension, the LQR employing the PSO method in choosing the weighting matrices provides a better control performance and a more systematic approach compared to the trial and error method. Key words: active suspension control, two–axle railway vehicle, linear quadratic regulator, particle swarm optimization


Sign in / Sign up

Export Citation Format

Share Document