scholarly journals A Data-Driven Framework to Predict Lithium-Ion Battery Cell Imbalance for Real-Time Battery Management Systems

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8492
Author(s):  
Chao Li ◽  
Assimina A. Pelegri

Models that can predict battery cells’ thermal and electrical behaviors are necessary for real-time battery management systems to regulate the imbalance within battery cells. This work introduces a Gaussian Process Regression (GPR)-based data-driven framework that succeeds the Multi-Scale Multi-Dimensional (MSMD) modeling structure. The framework can make highly accurate predictions at the same level as full-order full-distribution simulations based on MSMD. A pseudo-2D model is used to generate training data and is combined with a process that shifts computation burdens from real-time battery management systems to lab data preparation. The testing results highlight the reliability of the GPR-based data-driven framework in terms of accuracy and stability under various operational conditions.

2020 ◽  
Author(s):  
Weiji Han ◽  
Torsten Wik ◽  
Anton Kersten ◽  
Guangzhong Dong ◽  
Changfu Zou

<div>Batteries are widely applied to the energy storage and power supply in portable electronics, transportation, power systems, communication networks, etc. They are particularly demanded in the emerging technologies of vehicle electrification and renewable energy integration for a green and sustainable society. To meet various voltage, power, and energy requirements in large-scale applications, multiple battery cells have to be connected in series and/or parallel. While battery technology has advanced significantly in the past decade, existing battery management systems (BMSs) mainly focus on state monitoring and control of battery systems packed in fixed configurations. In fixed configurations, though, the battery system performance is in principle limited by the weakest cells, which can leave large parts severely underutilized. Allowing dynamic reconfiguration of battery cells, on the other hand, allows individual and flexible manipulation of the battery system at cell, module, and pack levels, which may open up a new paradigm for battery management. Following this trend, this paper provides an overview of next-generation BMSs featuring dynamic reconfiguration. Motivated by numerous potential benefits of reconfigurable battery systems (RBSs), the hardware designs, management principles, and optimization algorithms for RBSs are sequentially and systematically discussed. Theoretical and practical challenges during the design and implementation of RBSs are highlighted in the end to stimulate future research and development.</div>


2020 ◽  
Author(s):  
Weiji Han ◽  
Torsten Wik ◽  
Anton Kersten ◽  
Guangzhong Dong ◽  
Changfu Zou

<div>Batteries are widely applied to the energy storage and power supply in portable electronics, transportation, power systems, communication networks, etc. They are particularly demanded in the emerging technologies of vehicle electrification and renewable energy integration for a green and sustainable society. To meet various voltage, power, and energy requirements in large-scale applications, multiple battery cells have to be connected in series and/or parallel. While battery technology has advanced significantly in the past decade, existing battery management systems (BMSs) mainly focus on state monitoring and control of battery systems packed in fixed configurations. In fixed configurations, though, the battery system performance is in principle limited by the weakest cells, which can leave large parts severely underutilized. Allowing dynamic reconfiguration of battery cells, on the other hand, allows individual and flexible manipulation of the battery system at cell, module, and pack levels, which may open up a new paradigm for battery management. Following this trend, this paper provides an overview of next-generation BMSs featuring dynamic reconfiguration. Motivated by numerous potential benefits of reconfigurable battery systems (RBSs), the hardware designs, management principles, and optimization algorithms for RBSs are sequentially and systematically discussed. Theoretical and practical challenges during the design and implementation of RBSs are highlighted in the end to stimulate future research and development.</div>


Green ◽  
2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Max Jung ◽  
Simon Schwunk

AbstractUsing renewable energies means having to deal with a strongly stochastic behaviour, since for photovoltaics the sun has to shine or for wind generators the wind has to blow. For being able to supply the load any time, storage solutions are needed. Decreasing costs and better availabilities of new battery technologies like lithium-ion therefore result in a growing demand for more sophisticated battery systems in off-grid and grid connected applications. In e.g. off-grid applications, lead-acid battery systems are state of the art. Though, lithium-ion batteries become more popular because of their high energy density and long life time. Another application for electrochemical storage systems are electric vehicles. In all those cases the battery storages need to be managed. But the management of a battery system is not a trivial problem. The batteries must be monitored and controlled, there are challenges regarding safety, electrical isolation and energy efficiency. The article gives an introduction to different architectures of battery management systems (BMS). There are different approaches to design a BMS the article describes in the first part. In the second part, there is a more precise description of the electronic hardware and the software behind a BMS. To understand both function and importance of a BMS, the article introduces in the third part a few applications of BMS in bigger battery packs.


Energies ◽  
2018 ◽  
Vol 11 (6) ◽  
pp. 1490 ◽  
Author(s):  
Manoj Mathew ◽  
Stefan Janhunen ◽  
Mahir Rashid ◽  
Frank Long ◽  
Michael Fowler

Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1393
Author(s):  
Chan-Yong Zun ◽  
Sang-Uk Park ◽  
Hyung-Soo Mok

With recent advancements in the electrical industry, the demand for high capacity and high energy density batteries has increased, subsequently increasing the demand for fast and reliable battery charging. A battery is an assembly of a plurality of cells, in which maintaining a balance between neighboring cells is crucial for stable charging. To this end, various methods have been applied to battery management systems. Representative methods for maintaining the balance in battery cells include a passive method of adjusting the balance using a resistor and an active method involving the exchange of energy between the cells. However, these methods are limited in terms of efficiency, lifespan, and charging time. Therefore, in this study, we propose a new charging method at the battery cell level and demonstrate its effectiveness through experiments.


Sign in / Sign up

Export Citation Format

Share Document