scholarly journals A Methodology for the Identification and Characterization of Low-Temperature Waste Heat Sources and Sinks in Industrial Processes: Application in the Italian Dairy Sector

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 155
Author(s):  
Lorena Giordano ◽  
Miriam Benedetti

Waste heat recovery is considered as one of the most promising options to improve the efficiency and sustainability of industrial processes. Even though industrial waste heat is abundantly available and its utilization is not a new concept, the implementation rate of waste-heat recovery interventions in industrial facilities is still low, due to several real or perceived barriers. Foremost challenges are represented by technical, economic, financial and regulatory factors. An additional prominent barrier lies in the lack or incompleteness of information concerning the material and energy flows within the factories, and the types and characteristics of waste heat sources and possible sinks for their internal or external reuse. With the aim to overcome some of the information barriers and increase the willingness of companies to approach waste heat recovery and reuse, a methodology to map waste heat sources and sinks in industrial processes is proposed in this study. The approach here presented combines information from the most relevant publications on the subject and data gathered from the analysis of energy audits carried out by large and energy-intensive enterprises. In order to demonstrate its feasibility, the methodology was applied to the Italian dairy sector, because of its large energy consumption and its enormous potential for the utilization of low-temperature waste heat sources.

2021 ◽  
Vol 13 (9) ◽  
pp. 5223
Author(s):  
Miriam Benedetti ◽  
Daniele Dadi ◽  
Lorena Giordano ◽  
Vito Introna ◽  
Pasquale Eduardo Lapenna ◽  
...  

The recovery of waste heat is a fundamental means of achieving the ambitious medium- and long-term targets set by European and international directives. Despite the large availability of waste heat, especially at low temperatures (<250 °C), the implementation rate of heat recovery interventions is still low, mainly due to non-technical barriers. To overcome this limitation, this work aims to develop two distinct databases containing waste heat recovery case studies and technologies as a novel tool to enhance knowledge transfer in the industrial sector. Through an in-depth analysis of the scientific literature, the two databases’ structures were developed, defining fields and information to collect, and then a preliminary population was performed. Both databases were validated by interacting with companies which operate in the heat recovery technology market and which are possible users of the tools. Those proposed are the first example in the literature of databases completely focused on low-temperature waste heat recovery in the industrial sector and able to provide detailed information on heat exchange and the technologies used. The tools proposed are two key elements in supporting companies in all the phases of a heat recovery intervention: from identifying waste heat to choosing the best technology to be adopted.


Author(s):  
L. Lopera ◽  
C. Nieto ◽  
A. C. Escudero ◽  
C. A. Bustamante ◽  
M. C. Fernández

Nano Energy ◽  
2019 ◽  
Vol 64 ◽  
pp. 103906 ◽  
Author(s):  
Krystian Mistewicz ◽  
Marcin Jesionek ◽  
Marian Nowak ◽  
Mateusz Kozioł

2014 ◽  
Vol 926-930 ◽  
pp. 829-832
Author(s):  
Yan Feng Liu ◽  
Peng Cheng Wang ◽  
Shao Shan Zhang

Flue gas recycling system is an effective way of saving energy and improving efficiency for coal-fired power plant. In this paper, the general low-temperature economizer, heat pipe type low temperature economizer, composite phase change heat recovery system are introduced. Combined with a 600MW unit parameters, the economies of various waste heat recovery system are compared.


2002 ◽  
Vol 2002 (0) ◽  
pp. 63-64
Author(s):  
Ken Kuwahara ◽  
Bidyut Saha ◽  
Shigeru Koyama ◽  
Katsuhiko Furukawa ◽  
Keishi Nishihara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document