scholarly journals Learning Curves: A Novel Approach for Robustness Improvement of Load Forecasting

2021 ◽  
Vol 5 (1) ◽  
pp. 38
Author(s):  
Chiara Giola ◽  
Piero Danti ◽  
Sandro Magnani

In the age of AI, companies strive to extract benefits from data. In the first steps of data analysis, an arduous dilemma scientists have to cope with is the definition of the ’right’ quantity of data needed for a certain task. In particular, when dealing with energy management, one of the most thriving application of AI is the consumption’s optimization of energy plant generators. When designing a strategy to improve the generators’ schedule, a piece of essential information is the future energy load requested by the plant. This topic, in the literature it is referred to as load forecasting, has lately gained great popularity; in this paper authors underline the problem of estimating the correct size of data to train prediction algorithms and propose a suitable methodology. The main characters of this methodology are the Learning Curves, a powerful tool to track algorithms performance whilst data training-set size varies. At first, a brief review of the state of the art and a shallow analysis of eligible machine learning techniques are offered. Furthermore, the hypothesis and constraints of the work are explained, presenting the dataset and the goal of the analysis. Finally, the methodology is elucidated and the results are discussed.

Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1202
Author(s):  
Andres Gilberto Machado da Silva Benoit ◽  
Adriano Petry

Considering the growing volumes and varieties of ionosphere data, it is expected that automation of analytical model building using modern technologies could lead to more accurate results. In this work, machine learning techniques are applied to ionospheric modeling and prediction using sun activity data. We propose Total Electron Content (TEC) spectral analysis, using discrete cosine transform (DCT) to evaluate the relation to the solar features F10.7, sunspot number and photon flux data. The ionosphere modeling procedure presented is based on the assessment of a six-year period (2014–2019) of data. Different multi-dimension regression models were considered in experiments, where each geographic location was independently evaluated using its DCT frequency components. The features correlation analysis has shown that 5-year data seem more adequate for training, while learning curves revealed overfitting for polynomial regression from the 4th to 7th degrees. A qualitative evaluation using reconstructed TEC maps indicated that the 3rd degree polynomial regression also seems inadequate. For the remaining models, it can be noted that there is seasonal variation in root-mean-square error (RMSE) clearly related to the equinox (lower error) and solstice (higher error) periods, which points to possible seasonal adjustment in modeling. Elastic Net regularization was also used to reduce global RMSE values down to 2.80 TECU for linear regression.


Author(s):  
Shashidhara Bola

A new method is proposed to classify the lung nodules as benign and malignant. The method is based on analysis of lung nodule shape, contour, and texture for better classification. The data set consists of 39 lung nodules of 39 patients which contain 19 benign and 20 malignant nodules. Lung regions are segmented based on morphological operators and lung nodules are detected based on shape and area features. The proposed algorithm was tested on LIDC (lung image database consortium) datasets and the results were found to be satisfactory. The performance of the method for distinction between benign and malignant was evaluated by the use of receiver operating characteristic (ROC) analysis. The method achieved area under the ROC curve was 0.903 which reduces the false positive rate.


Computers ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 73 ◽  
Author(s):  
Rossi ◽  
Rubattino ◽  
Viscusi

Big data and analytics have received great attention from practitioners and academics, nowadays representing a key resource for the renewed interest in artificial intelligence, especially for machine learning techniques. In this article we explore the use of big data and analytics by different types of organizations, from various countries and industries, including the ones with a limited size and capabilities compared to corporations or new ventures. In particular, we are interested in organizations where the exploitation of big data and analytics may have social value in terms of, e.g., public and personal safety. Hence, this article discusses the results of two multi-industry and multi-country surveys carried out on a sample of public and private organizations. The results show a low rate of utilization of the data collected due to, among other issues, privacy and security, as well as the lack of staff trained in data analysis. Also, the two surveys show a challenge to reach an appropriate level of effectiveness in the use of big data and analytics, due to the shortage of the right tools and, again, capabilities, often related to a low rate of digital transformation.


Semantic Web ◽  
2020 ◽  
pp. 1-25
Author(s):  
Ashish Singh Patel ◽  
Giovanni Merlino ◽  
Dario Bruneo ◽  
Antonio Puliafito ◽  
O.P. Vyas ◽  
...  

Storage and analysis of video surveillance data is a significant challenge, requiring video interpretation and event detection in the relevant context. To perform this task, the low-level features including shape, texture, and color information are extracted and represented in symbolic forms. In this work, a methodology is proposed, which extracts the salient features and properties using machine learning techniques and represent this information as Linked Data using a domain ontology that is explicitly tailored for detection of certain activities. An ontology is also developed to include concepts and properties which may be applicable in the domain of surveillance and its applications. The proposed approach is validated with actual implementation and is thus evaluated by recognizing suspicious activity in an open parking space. The suspicious activity detection is formalized through inference rules and SPARQL queries. Eventually, Semantic Web Technology has proven to be a remarkable toolchain to interpret videos, thus opening novel possibilities for video scene representation, and detection of complex events, without any human involvement. The proposed novel approach can thus have representation of frame-level information of a video in structured representation and perform event detection while reducing storage and enhancing semantically-aided retrieval of video data.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
José Carlos Castillo ◽  
Diego Álvarez-Fernández ◽  
Fernando Alonso-Martín ◽  
Sara Marques-Villarroya ◽  
Miguel A. Salichs

Apraxia of speech is a motor speech disorder in which messages from the brain to the mouth are disrupted, resulting in an inability for moving lips or tongue to the right place to pronounce sounds correctly. Current therapies for this condition involve a therapist that in one-on-one sessions conducts the exercises. Our aim is to work in the line of robotic therapies in which a robot is able to perform partially or autonomously a therapy session, endowing a social robot with the ability of assisting therapists in apraxia of speech rehabilitation exercises. Therefore, we integrate computer vision and machine learning techniques to detect the mouth pose of the user and, on top of that, our social robot performs autonomously the different steps of the therapy using multimodal interaction.


Sign in / Sign up

Export Citation Format

Share Document