scholarly journals Complete Chloroplast Genome of Pinus densiflora Siebold & Zucc. and Comparative Analysis with Five Pine Trees

Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 600 ◽  
Author(s):  
Hye-In Kang ◽  
Hyun Oh Lee ◽  
Il Hwan Lee ◽  
In Sik Kim ◽  
Seok-Woo Lee ◽  
...  

Pinus densiflora (Korean red pine) is widely distributed in East Asia and considered one of the most important species in Korea. In this study, the complete chloroplast genome of P. densiflora was sequenced by combining the advantages of Oxford Nanopore MinION and Illumina MiSeq. The sequenced genome was then compared with that of a previously published conifer plastome. The chloroplast genome was found to be circular and comprised of a quadripartite structure, including 113 genes encoding 73 proteins, 36 tRNAs and 4 rRNAs. It had short inverted repeat regions and lacked ndh gene family genes, which is consistent with other Pinaceae species. The gene content of P. densiflora was found to be most similar to that of P. sylvestris. The newly attempted sequencing method could be considered an alternative method for obtaining accurate genetic information, and the chloroplast genome sequence of P. densiflora revealed in this study can be used in the phylogenetic analysis of Pinus species.

Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1354
Author(s):  
Slimane Khayi ◽  
Fatima Gaboun ◽  
Stacy Pirro ◽  
Tatiana Tatusova ◽  
Abdelhamid El Mousadik ◽  
...  

Argania spinosa (Sapotaceae), an important endemic Moroccan oil tree, is a primary source of argan oil, which has numerous dietary and medicinal proprieties. The plant species occupies the mid-western part of Morocco and provides great environmental and socioeconomic benefits. The complete chloroplast (cp) genome of A. spinosa was sequenced, assembled, and analyzed in comparison with those of two Sapotaceae members. The A. spinosa cp genome is 158,848 bp long, with an average GC content of 36.8%. The cp genome exhibits a typical quadripartite and circular structure consisting of a pair of inverted regions (IR) of 25,945 bp in length separating small single-copy (SSC) and large single-copy (LSC) regions of 18,591 and 88,367 bp, respectively. The annotation of A. spinosa cp genome predicted 130 genes, including 85 protein-coding genes (CDS), 8 ribosomal RNA (rRNA) genes, and 37 transfer RNA (tRNA) genes. A total of 44 long repeats and 88 simple sequence repeats (SSR) divided into mononucleotides (76), dinucleotides (7), trinucleotides (3), tetranucleotides (1), and hexanucleotides (1) were identified in the A. spinosa cp genome. Phylogenetic analyses using the maximum likelihood (ML) method were performed based on 69 protein-coding genes from 11 species of Ericales. The results confirmed the close position of A. spinosa to the Sideroxylon genus, supporting the revisiting of its taxonomic status. The complete chloroplast genome sequence will be valuable for further studies on the conservation and breeding of this medicinally and culinary important species and also contribute to clarifying the phylogenetic position of the species within Sapotaceae.


2020 ◽  
Author(s):  
Aziz Ebrahimi ◽  
Jennifer D. Antonides ◽  
Cornelia C. Pinchot ◽  
James M. Slavicek ◽  
Charles E. Flower ◽  
...  

ABSTRACTAmerican elm, Ulmus americana L., was cultivated widely in USA and Canada as a landscape tree, but the genome of this important species is poorly characterized. For the first time, we describe the sequencing and assembly of the chloroplast genomes of two American elm genotypes (RV16 and Am57845). The complete chloroplast genome of U. americana ranged from 158,935-158,993 bp. The genome contains 127 genes, including 85 protein-coding genes, 34 tRNA genes and 8 rRNA genes. Between the two American elm chloroplasts we sequenced, we identified 240 sequence variants (SNPs and indels). To evaluate the phylogeny of American elm, we compared the chloroplast genomes of two American elms along with seven Asian elm species and twelve other chloroplast genomes available through the NCBI database. As expected, Ulmus was closely related to Morus and Cannabis, as all three genera are assigned to the Urticales. Comparison of American elm with Asian elms revealed that trnH was absent from the chloroplast of American elm but not most Asian elms; conversely, petB, petD, psbL, trnK, and rps16 are present in the American elm but absent from all Asian elms. The complete chloroplast genome of U. americana will provide useful genetic resources for characterizing the genetic diversity of U. americana and potentially help to conserve natural populations of American elm.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248788
Author(s):  
Kyung-Ah Kim ◽  
Kyeong-Sik Cheon

Adenophora racemosa, belonging to the Campanulaceae, is an important species because it is endemic to Korea. The goal of this study was to assemble and annotate the chloroplast genome of A. racemosa and compare it with published chloroplast genomes of congeneric species. The chloroplast genome was reconstructed using de novo assembly of paired-end reads generated by the Illumina MiSeq platform. The chloroplast genome size of A. racemosa was 169,344 bp. In total, 112 unique genes (78 protein-coding genes, 30 tRNAs, and 4 rRNAs) were identified. A Maximum likelihood (ML) tree based on 76 protein-coding genes divided the five Adenophora species into two clades, showing that A. racemosa is more closely related to Adenophora stricta than to Adenophora divaricata. The gene order and contents of the LSC region of A. racemosa were identical to those of A. divaricata and A. stricta, but the structure of the SSC and IRs was unique due to IR contraction. Nucleotide diversity (Pi) >0.05 was found in eleven regions among the three Adenophora species not included in sect. Remotiflorae and in six regions between two species (A. racemosa and A. stricta).


2021 ◽  
Vol 6 (12) ◽  
pp. 3515-3516
Author(s):  
Qijing Xia ◽  
Chunying Hao ◽  
Baixi Zhang ◽  
Yousry A. El-Kassaby ◽  
Wei Li

2019 ◽  
Author(s):  
Xuemin Ye ◽  
Dongnan Hu ◽  
Yangping Guo ◽  
Rongxi Sun

AbstractCastanopsis sclerophylla (Lindl.) Schott is an important species of evergreen broad-leaved forest in subtropical area and has important ecological and economic value. However, there are little studies on its chloroplast genome. In this study, the complete chloroplast genome sequences of C. sclerophylla was reported based on the Illumina Hiseq 2500 platform. The complete chloroplast genome of C. sclerophylla was 160,497bp, including a pair of inverted repeated (IRs) regions (25,675bp) that were separated by a large single copy (LSC) region of 90,255bp, and a small single copy (SSC) region of 18,892bp. The overall GC content of chloroplast genome was 36.82%. A total of 131 genes were found, of these 111 genes were unique and annotated, including 79 protein-coding genes, 27 transfer RNA genes (tRNAs), and four ribosomal RNA genes (rRNAs). Twenty-one genes were found to be duplicated in the IR regions. Comparative analysis indicated that IR contraction might be the reason for the relatively smaller chloroplast genome size of C. sclerophylla compared with other three congeneric species. Sequence analysis detected that the LSC and SSC regions were more divergent than the IR regions within the Castanopsis, furthermore, a higher divergence was found in non-coding regions than in coding regions. The maximum likelihood (ML) phylogenetic analysis showed that these four species of the genus Castanopsis formed a monophyletic clade and that C. sclerophylla is closely related to Castanopsis hainanensis with strong bootstrap values. These results not only provide basic knowledge about characteristics of C. sclerophylla and also enhance our understanding of Castanopsis species evolution within the Fagaceae family. Meanwhile, these findings will contribute to the exploration, utilization and conservation genetics of C. sclerophylla.


Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 884
Author(s):  
Shufen Chen ◽  
Wataru Ishizuka ◽  
Toshihiko Hara ◽  
Susumu Goto

Research Highlights: The complete chloroplast genome for eight individuals of Japanese larch, including from the isolated population at the northern limit of the range (Manokami larch), revealed that Japanese larch forms a monophyletic group, within which Manokami larch can be phylogenetically placed in Japanese larch. We detected intraspecific variation for possible candidate cpDNA markers in Japanese larch. Background and Objectives: The natural distribution of Japanese larch is limited to the mountainous range in the central part of Honshu Island, Japan, with an isolated northern limit population (Manokami larch). In this study, we determined the phylogenetic position of Manokami larch within Japanese larch, characterized the chloroplast genome of Japanese larch, detected intraspecific variation, and determined candidate cpDNA markers. Materials and Methods: The complete genome sequence was determined for eight individuals, including Manokami larch, in this study. The genetic position of the northern limit population was evaluated using phylogenetic analysis. The chloroplast genome of Japanese larch was characterized by comparison with eight individuals. Furthermore, intraspecific variations were extracted to find candidate cpDNA markers. Results: The phylogenetic tree showed that Japanese larch forms a monophyletic group, within which Manokami larch can be phylogenetically placed, based on the complete chloroplast genome, with a bootstrap value of 100%. The value of nucleotide diversity (π) was calculated at 0.00004, based on SNP sites for Japanese larch, suggesting that sequences had low variation. However, we found three hyper-polymorphic regions within the cpDNA. Finally, we detected 31 intraspecific variations, including 19 single nucleotide polymorphisms, 8 simple sequence repeats, and 4 insertions or deletions. Conclusions: Using a distant genotype in a northern limit population (Manokami larch), we detected sufficient intraspecific variation for the possible candidates of cpDNA markers in Japanese larch.


2020 ◽  
Vol 5 (3) ◽  
pp. 2848-2849
Author(s):  
Jing Miao ◽  
Yabo Wang ◽  
Yaoqin Zhang ◽  
Lili Tong ◽  
Gengguo Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document