scholarly journals Complete chloroplast genome sequence of Adenophora racemosa (Campanulaceae): Comparative analysis with congeneric species

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248788
Author(s):  
Kyung-Ah Kim ◽  
Kyeong-Sik Cheon

Adenophora racemosa, belonging to the Campanulaceae, is an important species because it is endemic to Korea. The goal of this study was to assemble and annotate the chloroplast genome of A. racemosa and compare it with published chloroplast genomes of congeneric species. The chloroplast genome was reconstructed using de novo assembly of paired-end reads generated by the Illumina MiSeq platform. The chloroplast genome size of A. racemosa was 169,344 bp. In total, 112 unique genes (78 protein-coding genes, 30 tRNAs, and 4 rRNAs) were identified. A Maximum likelihood (ML) tree based on 76 protein-coding genes divided the five Adenophora species into two clades, showing that A. racemosa is more closely related to Adenophora stricta than to Adenophora divaricata. The gene order and contents of the LSC region of A. racemosa were identical to those of A. divaricata and A. stricta, but the structure of the SSC and IRs was unique due to IR contraction. Nucleotide diversity (Pi) >0.05 was found in eleven regions among the three Adenophora species not included in sect. Remotiflorae and in six regions between two species (A. racemosa and A. stricta).

2019 ◽  
Vol 42 (4) ◽  
pp. 601-611 ◽  
Author(s):  
Yan Li ◽  
Liukun Jia ◽  
Zhihua Wang ◽  
Rui Xing ◽  
Xiaofeng Chi ◽  
...  

Abstract Saxifraga sinomontana J.-T. Pan & Gornall belongs to Saxifraga sect. Ciliatae subsect. Hirculoideae, a lineage containing ca. 110 species whose phylogenetic relationships are largely unresolved due to recent rapid radiations. Analyses of complete chloroplast genomes have the potential to significantly improve the resolution of phylogenetic relationships in this young plant lineage. The complete chloroplast genome of S. sinomontana was de novo sequenced, assembled and then compared with that of other six Saxifragaceae species. The S. sinomontana chloroplast genome is 147,240 bp in length with a typical quadripartite structure, including a large single-copy region of 79,310 bp and a small single-copy region of 16,874 bp separated by a pair of inverted repeats (IRs) of 25,528 bp each. The chloroplast genome contains 113 unique genes, including 79 protein-coding genes, four rRNAs and 30 tRNAs, with 18 duplicates in the IRs. The gene content and organization are similar to other Saxifragaceae chloroplast genomes. Sixty-one simple sequence repeats were identified in the S. sinomontana chloroplast genome, mostly represented by mononucleotide repeats of polyadenine or polythymine. Comparative analysis revealed 12 highly divergent regions in the intergenic spacers, as well as coding genes of matK, ndhK, accD, cemA, rpoA, rps19, ndhF, ccsA, ndhD and ycf1. Phylogenetic reconstruction of seven Saxifragaceae species based on 66 protein-coding genes received high bootstrap support values for nearly all identified nodes, suggesting a promising opportunity to resolve infrasectional relationships of the most species-rich section Ciliatae of Saxifraga.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 744
Author(s):  
Yunyan Zhang ◽  
Yongjing Tian ◽  
David Y. P. Tng ◽  
Jingbo Zhou ◽  
Yuntian Zhang ◽  
...  

Litsea Lam. is an ecological and economic important genus of the “core Lauraceae” group in the Lauraceae. The few studies to date on the comparative chloroplast genomics and phylogenomics of Litsea have been conducted as part of other studies on the Lauraceae. Here, we sequenced the whole chloroplast genome sequence of Litsea auriculata, an endangered tree endemic to eastern China, and compared this with previously published chloroplast genome sequences of 11 other Litsea species. The chloroplast genomes of the 12 Litsea species ranged from 152,132 (L. szemaois) to 154,011 bp (L. garrettii) and exhibited a typical quadripartite structure with conserved genome arrangement and content, with length variations in the inverted repeat regions (IRs). No codon usage preferences were detected within the 30 codons used in the chloroplast genomes, indicating a conserved evolution model for the genus. Ten intergenic spacers (psbE–petL, trnH–psbA, petA–psbJ, ndhF–rpl32, ycf4–cemA, rpl32–trnL, ndhG–ndhI, psbC–trnS, trnE–trnT, and psbM–trnD) and five protein coding genes (ndhD, matK, ccsA, ycf1, and ndhF) were identified as divergence hotspot regions and DNA barcodes of Litsea species. In total, 876 chloroplast microsatellites were located within the 12 chloroplast genomes. Phylogenetic analyses conducted using the 51 additional complete chloroplast genomes of “core Lauraceae” species demonstrated that the 12 Litsea species grouped into four sub-clades within the Laurus-Neolitsea clade, and that Litsea is polyphyletic and closely related to the genera Lindera and Laurus. Our phylogeny strongly supported the monophyly of the following three clades (Laurus–Neolitsea, Cinnamomum–Ocotea, and Machilus–Persea) among the above investigated “core Lauraceae” species. Overall, our study highlighted the taxonomic utility of chloroplast genomes in Litsea, and the genetic markers identified here will facilitate future studies on the evolution, conservation, population genetics, and phylogeography of L. auriculata and other Litsea species.


Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1354
Author(s):  
Slimane Khayi ◽  
Fatima Gaboun ◽  
Stacy Pirro ◽  
Tatiana Tatusova ◽  
Abdelhamid El Mousadik ◽  
...  

Argania spinosa (Sapotaceae), an important endemic Moroccan oil tree, is a primary source of argan oil, which has numerous dietary and medicinal proprieties. The plant species occupies the mid-western part of Morocco and provides great environmental and socioeconomic benefits. The complete chloroplast (cp) genome of A. spinosa was sequenced, assembled, and analyzed in comparison with those of two Sapotaceae members. The A. spinosa cp genome is 158,848 bp long, with an average GC content of 36.8%. The cp genome exhibits a typical quadripartite and circular structure consisting of a pair of inverted regions (IR) of 25,945 bp in length separating small single-copy (SSC) and large single-copy (LSC) regions of 18,591 and 88,367 bp, respectively. The annotation of A. spinosa cp genome predicted 130 genes, including 85 protein-coding genes (CDS), 8 ribosomal RNA (rRNA) genes, and 37 transfer RNA (tRNA) genes. A total of 44 long repeats and 88 simple sequence repeats (SSR) divided into mononucleotides (76), dinucleotides (7), trinucleotides (3), tetranucleotides (1), and hexanucleotides (1) were identified in the A. spinosa cp genome. Phylogenetic analyses using the maximum likelihood (ML) method were performed based on 69 protein-coding genes from 11 species of Ericales. The results confirmed the close position of A. spinosa to the Sideroxylon genus, supporting the revisiting of its taxonomic status. The complete chloroplast genome sequence will be valuable for further studies on the conservation and breeding of this medicinally and culinary important species and also contribute to clarifying the phylogenetic position of the species within Sapotaceae.


2020 ◽  
Author(s):  
Aziz Ebrahimi ◽  
Jennifer D. Antonides ◽  
Cornelia C. Pinchot ◽  
James M. Slavicek ◽  
Charles E. Flower ◽  
...  

ABSTRACTAmerican elm, Ulmus americana L., was cultivated widely in USA and Canada as a landscape tree, but the genome of this important species is poorly characterized. For the first time, we describe the sequencing and assembly of the chloroplast genomes of two American elm genotypes (RV16 and Am57845). The complete chloroplast genome of U. americana ranged from 158,935-158,993 bp. The genome contains 127 genes, including 85 protein-coding genes, 34 tRNA genes and 8 rRNA genes. Between the two American elm chloroplasts we sequenced, we identified 240 sequence variants (SNPs and indels). To evaluate the phylogeny of American elm, we compared the chloroplast genomes of two American elms along with seven Asian elm species and twelve other chloroplast genomes available through the NCBI database. As expected, Ulmus was closely related to Morus and Cannabis, as all three genera are assigned to the Urticales. Comparison of American elm with Asian elms revealed that trnH was absent from the chloroplast of American elm but not most Asian elms; conversely, petB, petD, psbL, trnK, and rps16 are present in the American elm but absent from all Asian elms. The complete chloroplast genome of U. americana will provide useful genetic resources for characterizing the genetic diversity of U. americana and potentially help to conserve natural populations of American elm.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Ying Zhang ◽  
Hai-Li Li ◽  
Jun-Di Zhong ◽  
Yun Wang ◽  
Chang-Chun Yuan

In the Combretaceae family, only two species of Lumnitzera and one species of Laguncularia belong to mangroves. Among them, Lumnitzera littorea (Jack) Voigt. is an endangered mangrove plant in China for the limited occurrence and seed abortion. In contrast, Lumnitzera racemosa Willd. is known as the most widespread mangrove plant in China. Laguncularia racemosa C. F. Gaertn., an exotic mangrove in China, has the fast growth and high adaptation ability. To better understand the phylogenetic positions of these mangroves in Combretaceae and in Myrtales and to provide information for studies on evolutionary adaptation for intertidal habitat, the complete chloroplast (cp) genomes of Lu. racemosa and La. racemosa were sequenced. Furthermore, we present here the results from the assembly and annotation of the two cp genomes, which were further subjected to the comparative analysis with Lu. littorea cp genomes we published before and other eleven closely related species within Myrtales. The chloroplast genomes of the three Combretaceae mangrove species: Lu. littorea, Lu. racemosa, and La. racemosa are 159,687 bp, 159,473 bp, and 158,311 bp in size. All three cp genomes host 130 genes including 85 protein-coding genes, 37 tRNAs, and 4 rRNAs. A comparative analysis of those three genomes revealed the high similarity of genes in coding-regions and conserved gene order in the IR and LSC/SSC regions. The differences between Lumnitzera and Laguncularia cp genomes are the locations of rps19 and rpl2 genes in the IR/SC boundary regions. Investigating the effects of selection events on shared protein-coding genes showed a relaxed selection had acted on the ycf2, ycf1, and matK genes of Combretaceae mangroves compared to the nonmangrove species Eucalyptus aromaphloia. The phylogenetic analysis based on the whole chloroplast genome sequence with one outgroup species strongly supported three Combretaceae mangroves together with other two Combretaceae species formed a cluster in Combretaceae. This study is the first report on the comparative analysis of three Combretaceae mangrove chloroplast genomes, which will provide the significant information for understanding photosynthesis and evolution in Combretaceae mangrove plants.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1405
Author(s):  
Gurusamy Raman ◽  
SeonJoo Park

The plant “False Lily of the Valley”, Speirantha gardenii is restricted to south-east China and considered as an endemic plant. Due to its limited availability, this plant was less studied. Hence, this study is focused on its molecular studies, where we have sequenced the complete chloroplast genome of S. gardenii and this is the first report on the chloroplast genome sequence of Speirantha. The complete S. gardenii chloroplast genome is of 156,869 bp in length with 37.6% GC, which included a pair of inverted repeats (IRs) each of 26,437 bp that separated a large single-copy (LSC) region of 85,368 bp and a small single-copy (SSC) region of 18,627 bp. The chloroplast genome comprises 81 protein-coding genes, 30 tRNA and four rRNA unique genes. Furthermore, a total of 699 repeats and 805 simple-sequence repeats (SSRs) markers are identified in the genome. Additionally, KA/KS nucleotide substitution analysis showed that seven protein-coding genes have highly diverged and identified nine amino acid sites under potentially positive selection in these genes. Phylogenetic analyses suggest that S. gardenii species has a closer genetic relationship to the Reineckea, Rohdea and Convallaria genera. The present study will provide insights into developing a lineage-specific marker for genetic diversity and gene evolution studies in the Nolinoideae taxa.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12268
Author(s):  
Panthita Ruang-areerate ◽  
Wasitthee Kongkachana ◽  
Chaiwat Naktang ◽  
Chutima Sonthirod ◽  
Nattapol Narong ◽  
...  

Bruguiera is a genus of true mangroves that are mostly distributed in the Indo-West Pacific region. However, the number of published whole chloroplast genome sequences of Bruguiera species are limited. Here, the complete chloroplast sequences of five Bruguiera species were sequenced and assembled using Illumina data. The chloroplast genomes of B. gymnorhiza, B. hainesii, B. cylindrica, B. parviflora and B. sexangula were assembled into 161,195, 164,295, 164,297, 163,228 and 164,170 bp, respectively. All chloroplast genomes contain 37 tRNA and eight rRNA genes, with either 84 or 85 protein-coding genes. A comparative analysis of these genomes revealed high similarity in gene structure, gene order and boundary position of the LSC, SSC and two IR regions. Interestingly, B. gymnorhiza lost a rpl32 gene in the SSC region. In addition, a ndhF gene in B. parviflora straddles both the SSC and IRB boundary regions. These genes reveal differences in chloroplast evolution among Bruguiera species. Repeats and SSRs in the chloroplast genome sequences were found to be highly conserved between B. cylindrica and B. hainesii as well as B. gymnorhiza and B. sexangula indicating close genetic relationships based on maternal inheritance. Notably, B. hainesii, which is considered a hybrid between B. gymnorhiza and B. cylindrica, appears to have inherited the chloroplast from B. cylindrica. Investigating the effects of selection events on shared protein-coding genes showed a positive selection in rps7 and rpl36 genes in all species compared to land-plant species. A phylogenetic analysis, based on 59 conserved chloroplast protein-coding genes, showed strong support that all Bruguiera species are in the clade Rhizophoraceae. This study provides valuable genetic information for the study of evolutionary relationships and population genetics in Bruguiera and other mangrove species.


Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 737 ◽  
Author(s):  
Abdullah ◽  
Claudia L. Henriquez ◽  
Furrukh Mehmood ◽  
Iram Shahzadi ◽  
Zain Ali ◽  
...  

The chloroplast genome provides insight into the evolution of plant species. We de novo assembled and annotated chloroplast genomes of four genera representing three subfamilies of Araceae: Lasia spinosa (Lasioideae), Stylochaeton bogneri, Zamioculcas zamiifolia (Zamioculcadoideae), and Orontium aquaticum (Orontioideae), and performed comparative genomics using these chloroplast genomes. The sizes of the chloroplast genomes ranged from 163,770 bp to 169,982 bp. These genomes comprise 113 unique genes, including 79 protein-coding, 4 rRNA, and 30 tRNA genes. Among these genes, 17–18 genes are duplicated in the inverted repeat (IR) regions, comprising 6–7 protein-coding (including trans-splicing gene rps12), 4 rRNA, and 7 tRNA genes. The total number of genes ranged between 130 and 131. The infA gene was found to be a pseudogene in all four genomes reported here. These genomes exhibited high similarities in codon usage, amino acid frequency, RNA editing sites, and microsatellites. The oligonucleotide repeats and junctions JSB (IRb/SSC) and JSA (SSC/IRa) were highly variable among the genomes. The patterns of IR contraction and expansion were shown to be homoplasious, and therefore unsuitable for phylogenetic analyses. Signatures of positive selection were seen in three genes in S. bogneri, including ycf2, clpP, and rpl36. This study is a valuable addition to the evolutionary history of chloroplast genome structure in Araceae.


Diversity ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 403
Author(s):  
Umar Rehman ◽  
Nighat Sultana ◽  
Abdullah ◽  
Abbas Jamal ◽  
Maryam Muzaffar ◽  
...  

Family Phyllanthaceae belongs to the eudicot order Malpighiales, and its species are herbs, shrubs, and trees that are mostly distributed in tropical regions. Here, we elucidate the molecular evolution of the chloroplast genome in Phyllanthaceae and identify the polymorphic loci for phylogenetic inference. We de novo assembled the chloroplast genomes of three Phyllanthaceae species, i.e., Phyllanthus emblica, Flueggea virosa, and Leptopus cordifolius, and compared them with six other previously reported genomes. All species comprised two inverted repeat regions (size range 23,921–27,128 bp) that separated large single-copy (83,627–89,932 bp) and small single-copy (17,424–19,441 bp) regions. Chloroplast genomes contained 111–112 unique genes, including 77–78 protein-coding, 30 tRNAs, and 4 rRNAs. The deletion/pseudogenization of rps16 genes was found in only two species. High variability was seen in the number of oligonucleotide repeats, while guanine-cytosine contents, codon usage, amino acid frequency, simple sequence repeats, synonymous and non-synonymous substitutions, and transition and transversion substitutions were similar. The transition substitutions were higher in coding sequences than in non-coding sequences. Phylogenetic analysis revealed the polyphyletic nature of the genus Phyllanthus. The polymorphic protein-coding genes, including rpl22, ycf1, matK, ndhF, and rps15, were also determined, which may be helpful for reconstructing the high-resolution phylogenetic tree of the family Phyllanthaceae. Overall, the study provides insight into the chloroplast genome evolution in Phyllanthaceae.


Author(s):  
Luoyun Wang ◽  
Jing Wang ◽  
Caiyun He ◽  
Jianguo Zhang ◽  
Yanfei Zeng

Hippophae is a tree species with ecological, economic and social benefits. In this study, we assembled and annotated chloroplast genomes of sympatric Hippophae gyantsensis and H. rhamnoides subsp. yunnanensis. Their full-length are 155260 and 156415 bp, respectively. Each of them has 131 genes, comprising 85 protein-coding genes, 8 ribosomal RNA genes and 38 transfer RNA genes. After comparing the chloroplast genomes, we found 1302 base difference loci, and 63.29% are located in the intergenic region or intron sequences and 36.71% are located in the coding sequences. The SSC region has the highest mutation rate, followed by the LSC region; the IR regions have the lowest mutation rate. Among the protein-coding genes, three had a ratio of nonsynonymous to synonymous substitutions (Ka/Ks) >1 (but P values were non-significant) and 66 had Ka/Ks <1 (46 were significant). In general, the chloroplast protein-coding genes may be subject to purification selection. Among H. gyantsensis and H. rhamnoides subsp. yunnanensis chloroplast protein-coding genes, there are 20 and 16 optimal codons, respectively. Most of the optimal codons were ending with A or U, which indicates significant AT preference. It is an important reference for studies on the general characteristics and evolution of the Hippophae chloroplast genome.


Sign in / Sign up

Export Citation Format

Share Document