scholarly journals Quantification of Lichen Cover and Biomass Using Field Data, Airborne Laser Scanning and High Spatial Resolution Optical Data—A Case Study from a Canadian Boreal Pine Forest

Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 682
Author(s):  
Ashley C. Hillman ◽  
Scott E. Nielsen

Ground-dwelling macrolichens dominate the forest floor of mature upland pine stands in the boreal forest. Understanding patterns of lichen abundance, as well as environmental characteristics associated with lichen growth, is key to managing lichens as a forage resource for threatened woodland caribou (Rangifer tarandus caribou). The spectral signature of light-coloured lichen distinguishes it from green vegetation, potentially allowing for mapping of lichen abundance using multi-spectral imagery, while canopy structure measured from airborne laser scanning (ALS) of forest openings can indirectly map lichen habitat. Here, we test the use of high-resolution KOMPSAT (Korea Multi-Purpose Satellite-3) imagery (280 cm resolution) and forest structural characteristics derived from ALS to predict lichen biomass in an upland jack pine forest in Northeastern Alberta, Canada. We quantified in the field lichen abundance (cover and biomass) in mature jack pine stands across low, moderate, and high canopy cover. We then used generalized linear models to relate lichen abundance to spectral data from KOMPSAT and structural metrics from ALS. Model selection suggested that lichen abundance was best predicted by canopy cover (ALS points > 1.37 m) and to a lesser extent blue spectral data from KOMPSAT. Lichen biomass was low at plots with high canopy cover (98.96 g/m2), while almost doubling for plots with low canopy cover (186.30 g/m2). Overall the model fit predicting lichen biomass was good (R2 c = 0.35), with maps predicting lichen biomass from spectral and structural data illustrating strong spatial variations. High-resolution mapping of ground lichen can provide information on lichen abundance that can be of value for management of forage resources for woodland caribou. We suggest that this approach could be used to map lichen biomass for other regions.

Forests ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 158 ◽  
Author(s):  
Darío Domingo ◽  
María Lamelas ◽  
Antonio Montealegre ◽  
Alberto García-Martín ◽  
Juan de la Riva

2017 ◽  
Vol 54 (5) ◽  
pp. 721-740 ◽  
Author(s):  
Antonio Luis Montealegre-Gracia ◽  
María Teresa Lamelas-Gracia ◽  
Alberto García-Martín ◽  
Juan de la Riva-Fernández ◽  
Francisco Escribano-Bernal

2018 ◽  
Author(s):  
Tommaso Jucker ◽  
Gregory P. Asner ◽  
Michele Dalponte ◽  
Philip Brodrick ◽  
Christopher D. Philipson ◽  
...  

Abstract. Borneo contains some of the world’s most biodiverse and carbon dense tropical forest, but this 750 000-km2 island has lost 62 % of its old-growth forests within the last 40 years. Efforts to protect and restore the remaining forests of Borneo hinge on recognising the ecosystem services they provide, including their ability to store and sequester carbon. Airborne Laser Scanning (ALS) is a remote sensing technology that allows forest structural properties to be captured in great detail across vast geographic areas. In recent years ALS has been integrated into state-wide assessment of forest carbon in Neotropical and African regions, but not yet in Asia. For this to happen, new regional models, need to be developed for estimating carbon stocks from ALS in tropical Asia, as the forests of this region are structurally and compositionally distinct from those found elsewhere in the tropics. By combining ALS imagery with data from 173 permanent forest plots spanning the lowland rain forests of Sabah, on the island of Borneo, we develop a simple-yet-general model for estimating forest carbon stocks using ALS-derived canopy height and canopy cover as input metrics. An advanced feature of this new model is the propagation of uncertainty in both ALS- and ground-based data, allowing uncertainty in hectare-scale estimates of carbon stocks to be quantified robustly. We show that the model effectively captures variation in aboveground carbons stocks across extreme disturbance gradients spanning tall dipterocarp forests and heavily logged regions, and clearly outperforms existing ALS-based models calibrated for the tropics, as well as currently available satellite-derived products. Our model provides a simple, generalised and effective approach for mapping forest carbon stocks in Borneo, and underpins ongoing efforts to safeguard and facilitate the restoration of its unique tropical forests.


Eos ◽  
2005 ◽  
Vol 86 (25) ◽  
pp. 237 ◽  
Author(s):  
Bea Csatho ◽  
Toni Schenk ◽  
William Krabill ◽  
Terry Wilson ◽  
William Lyons ◽  
...  

Author(s):  
Antonio Ferraz ◽  
Clement Mallet ◽  
Gil Goncalves ◽  
Margarida Tome ◽  
Paula Soares ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document