scholarly journals Quantitative Genetic Variation in Bark Stripping of Pinus radiata

Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1356
Author(s):  
Judith S. Nantongo ◽  
Brad M. Potts ◽  
Hugh Fitzgerald ◽  
Jessica Newman ◽  
Stephen Elms ◽  
...  

Bark stripping by mammals is a major problem for conifer forestry worldwide. In Australia, bark stripping in the exotic plantations of Pinus radiata is mainly caused by native marsupials. As a sustainable management option, we explored the extent to which natural variation in the susceptibility of P. radiata is under genetic control and is thus amenable to genetic improvement. Bark stripping was assessed at ages four and five years in two sister trials comprising 101 and 138 open-pollinated half-sib families. A third younger trial comprising 74 full-sib control-pollinated families was assessed at two and three years after planting. Significant additive genetic variation in bark stripping was demonstrated in all trials, with narrow-sense heritability estimates between 0.06 and 0.14. Within sites, the amount of additive genetic variation detected increased with the level of bark stripping. When strongly expressed across the two sister trials, the genetic signal was stable (i.e., there was little genotype × environment interaction). No significant non-additive effect (specific combining ability effect) on bark stripping was detected in the full-sib family trial, where it was estimated that up to 22.1% reduction in bark stripping might be achieved by selecting 20% of the less susceptible families. Physical traits that were genetically correlated, and likely influenced the amount of bark removed from the trees by the marsupials, appeared to depend upon tree age. In the older trials, these traits included bark features (presence of rough bark, rough bark height, and bark thickness), whereas in the younger trial where rough bark was not developed, it was the presence of obstructive branches or needles on the stem. In the younger trial, a positive genetic correlation between prior height and bark stripping was detected, suggesting that initially faster growing trees exhibit more bark stripping than slower growing trees but later develop rough bark faster and became less susceptible. While the presence of unexplained genetic variation after accounting for these physical factors suggests that other explanatory plant traits may be involved, such as chemical traits, overall the results indicate that selection for reduced susceptibility is possible, with potential genetic gains for deployment and breeding.

2011 ◽  
Vol 59 (2) ◽  
pp. 170 ◽  
Author(s):  
M. G. Hamilton ◽  
P. A. Tilyard ◽  
D. R. Williams ◽  
R. E. Vaillancourt ◽  
T. J. Wardlaw ◽  
...  

Eucalyptus globulus is one of the best known examples of a heteroblastic plant. It exhibits a dramatic phase change from distinctive juvenile to adult leaves, but the timing of this transition varies markedly. We examined the genetic variation in the timing of heteroblastic transition using five large open-pollinated progeny trials established in north-western Tasmania. We used univariate and multi-variate mixed models to analyse data on the presence/absence of adult or intermediate foliage at age 2 years from a total of 14 860 trees across five trials, as well as height to heteroblastic phase change from one trial. Up to 566 families and 15 geographic subraces of E. globulus were represented in the trials. The timing of the heteroblastic transition was genetically variable and under strong genetic control at the subrace and within-subrace level, with single-trial narrow-sense heritability estimates for the binary trait averaging 0.50 (range 0.44–0.65). The degree of quantitative trait differentiation in the timing of heteroblastic transition among subraces, as measured by QST, exceeded the published level of neutral molecular marker (FST) differentiation in all cases, arguing that diversifying selection has contributed to shaping broad-scale patterns of genetic differentiation. Most inter-trial genetic correlations were close to one at the subrace and additive genetic levels, indicating that the genetic variation in this important developmental change is expressed in a stable manner and that genotype-by-environment interaction is minimal across the environments studied.


1999 ◽  
Vol 50 (3) ◽  
pp. 291 ◽  
Author(s):  
G. J. Rebetzke ◽  
R. A. Richards

Grain yield potential of Australian wheat crops is often limited because of inadequate water for crop growth and grain filling. Greater early vigour, defined here as the amount of leaf area produced early in the season, should improve the water-use efficiency and yield of wheat crops grown in Mediterranean-type climates such as occurs in southern Australia. In order to maximise selection efficiency for early vigour in breeding programs, the magnitude and form of genetic variation for early vigour and its components was investigated for 2 contrasting wheat populations. The first population comprised 28 Australian and overseas wheat varieties evaluated in a serial sowing study in Canberra. The second population contained 50 random F 2:4 and F 2:6 families derived from a convergent cross of elite CIMMYT wheat lines evaluated in Canberra, and in the field at Condobolin, New South Wales. For the first population, environmental effects on leaf breadth and length, and to a lesser extent, phyllochron interval, produced significant (P < 0.05) changes in leaf area. Large and significant (P < 0.05) differences were observed among Australian and overseas wheats for early vigour and its components. Australian varieties were among the least vigorous of the lines tested, with a number of overseas varieties producing about 75% greater leaf area than representative Australian wheats. Increased leaf area was genetically correlated with increases in leaf breadth and length, and a longer phyllochron interval. Significant (P < 0.05) genotype ´ environment interaction reduced broad-sense heritability (%) for early vigour (H ± s.e., 87 ± 26) compared with leaf breadth (96 ± 25) and length (97 ± 27). Narrow-sense heritability (%) in the second population was small for leaf area (h2 ± s.e., 30 ± 6) and plant biomass (35 ± 7), but high for leaf breadth (76 ± 14) and length (67 ± 16). Genetic correlations were strong and positive for leaf area with plant biomass, leaf breadth and length, specific leaf area and coleoptile tiller frequency, whereas faster leaf and primary tiller production were negatively correlated with leaf area. The high heritability for leaf breadth coupled with its strong genetic correlation with leaf area (rg = 0.56-0.57) indicated that selection for leaf breadth should produce genetic gain in leaf area similar to selection for leaf area per se. However, the ease with which leaf breadth can be measured indicates that selection for this character either by itself, or in combination with coleoptile tiller production, should provide a rapid and non-destructive screening for early vigour in segregating wheat populations. The availability of genetic variation for early vigour and correlated traits should enable direct or indirect selection for greater leaf area in segregating wheat populations.


Author(s):  
Judith S. Nantongo ◽  
Brad M. Potts ◽  
Noel W. Davies ◽  
Don Aurik ◽  
Stephen Elms ◽  
...  

2018 ◽  
Vol 39 (3) ◽  
pp. 427-439 ◽  
Author(s):  
José A Ramírez-Valiente ◽  
Julie R Etterson ◽  
Nicholas J Deacon ◽  
Jeannine Cavender-Bares

Abstract Heritable variation in polygenic (quantitative) traits is critical for adaptive evolution and is especially important in this era of rapid climate change. In this study, we examined the levels of quantitative genetic variation of populations of the tropical tree Quercus oleoides Cham. and Schlect. for a suite of traits related to resource use and drought resistance. We tested whether quantitative genetic variation differed across traits, populations and watering treatments. We also tested potential evolutionary factors that might have shaped such a pattern: selection by climate and genetic drift. We measured 15 functional traits on 1322 1-year-old seedlings of 84 maternal half-sib families originating from five populations growing under two watering treatments in a greenhouse. We estimated the additive genetic variance, coefficient of additive genetic variation and narrow-sense heritability for each combination of traits, populations and treatments. In addition, we genotyped a total of 119 individuals (with at least 20 individuals per population) using nuclear microsatellites to estimate genetic diversity and population genetic structure. Our results showed that gas exchange traits and growth exhibited strikingly high quantitative genetic variation compared with traits related to leaf morphology, anatomy and photochemistry. Quantitative genetic variation differed between populations even at geographical scales as small as a few kilometers. Climate was associated with quantitative genetic variation, but only weakly. Genetic structure and diversity in neutral markers did not relate to coefficient of additive genetic variation. Our study demonstrates that quantitative genetic variation is not homogeneous across traits and populations of Q. oleoides. More importantly, our findings suggest that predictions about potential responses of species to climate change need to consider population-specific evolutionary characteristics.


1965 ◽  
Vol 6 (3) ◽  
pp. 371-386 ◽  
Author(s):  
B. D. H. Latter

The variation shown by the Australian Commercial population of P. tuberosa in respect of date of ear emergence, seed weight and seedling weight has been analysed, and the interrelationships among the variables characterized. All three characters show appreciable additive genetic variation, in the sense that approximately seven generations of artificial selection would be sufficient to push the population mean for each trait beyond the range shown by introduced ecotypes.Apart from the positive association between seed weight and seedling weight due to maternal influence, the three variables are to a large extent genetically independent in this locally adapted interbreeding population. It is therefore probable that the negative ecotypic correlations between seedling growth rate and date of ear emergence, and between seed weight and date of ear emergence, would rapidly be dispelled under random mating in a synthetic population.Under open-pollination, date of ear emergence has been shown to be subject to phenotypic assortative mating of degree ρ = 0·78, approximately 53% of the variation being additive genetic. Variation in seed weight within the strain is extensive, with a heritability of 0·79. Neither character shows evidence of important genotype × years interaction.Variation in seedling weight involves an appreciable genotype × environment interaction component, and has a heritability of only 0·17 which includes variation due to genetically determined maternal effects. The correlation between the seed weight of an ovule parent and the ‘ true’ mean seedling weight of the derived maternal half-sib group is of the order of 0·57. It has been estimated that the correlated response per generation in seedling weight, due to selection for seed weight, is 0·54 times that expected from direct selection.


Author(s):  
G.G. Cossens ◽  
M.F. Hawke

During the first 20 years of a Pinus radiata tree rotation, tree growth and pasture yield were assessed under a range of tree spacings at Invermay and Akatore, two coastal sites in Eastern Otago. Pasture yield in association with trees thinned to 100 stems per hectare (sph) was comparable to that from open pasture up to a tree age of 12 years. By the 19th year, however, pasture production declined to 63% of open pasture yield at Invermay and to 42% at Akatore. At 200 and 400 sph at Akatore, pasture yield was similar to that from open pasture at tree age 12 years but declined to 27% and 0% of open pasture yield respectively by year 20. At both Invermay and Akatore, the ryegrass and clover content of open pasture was relatively constant throughout the term of the trial. However, both the ryegrass and clover content of pasture beneath trees began to decline by tree age 12 years with a very rapid decline at Akatore in the number of pasture species at 200 sph by the 19th year. No pasture remained at 400 sph, after 19 years. Livestock carrying capacity with sheep on tree treatments at Invermay decreased from 100% of open pasture at year 6 to 60% by year 10. At Akatore, livestock carrying capacity averaged over the 20-year life of the trial was 4.1 stock units per hectare with a maximum of 8.1 stock units at a tree age of 8 years. Tree growth at both sites was similar, averaging between 1 and 1.1 m/year in height over 20 years, with trees at Invermay at 100 sph averaging 9% greater height and diameter growth than at Akatore. Increasing tree stocking from 100 to 200 to 400 sph at Akatore, resulted in increased tree height, but decreased diameter at breast height. A comparison of the East Otago trees with those in a similar trial at Tikitere (Rotorua) 900 km further north indicated that the southern trees were about 6 years later in their growth pattern by tree age 20 years. On both sites, soil pH tended to be lower in the presence of trees and was significantly lower than in open pasture by year 20. The results and comparisons with the Tikitere data suggest that, in an integrated agroforestry regime, there will be livestock grazing under the trees further into the tree rotation in Otago than in North Island sites. However, slower tree growth would result in a longer rotation time to harvest. Current recommendations to farmers are to plant trees on the less productive areas of the farm and adopt a tree stocking rate which fully utilises the site. Keywords: agroforestry, livestock, pasture, Pinus radiata, soil pH, tree stocking


Genetics ◽  
1992 ◽  
Vol 130 (1) ◽  
pp. 223-227
Author(s):  
A Gimelfarb

Abstract It is demonstrated that systems of two pleiotropically related characters controlled by additive diallelic loci can maintain under Gaussian stabilizing selection a stable polymorphism in more than two loci. It is also shown that such systems may have multiple stable polymorphic equilibria. Stabilizing selection generates negative linkage disequilibrium, as a result of which the equilibrium phenotypic variances are quite low, even though the level of allelic polymorphisms can be very high. Consequently, large amounts of additive genetic variation can be hidden in populations at equilibrium under stabilizing selection on pleiotropically related characters.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1845
Author(s):  
Santosh Nayak ◽  
Hem Bhandari ◽  
Carl Sams ◽  
Virginia Sykes ◽  
Haileab Hilafu ◽  
...  

Switchgrass (Panicum virgatum L.) is a warm-season, perennial grass valued as a promising candidate species for bioenergy feedstock production. Biomass yield is the most important trait for any bioenergy feedstock. This study was focused on understanding the genetics underlying biomass yield and feedstock quality traits in a “Kanlow” population. The objectives of this study were to (i) assess genetic variation (ii) estimate the narrow sense heritability, and (iii) predict genetic gain per cycle of selection for biomass yield and the components of lignocelluloses. Fifty-four Kanlow half-sib (KHS) families along with Kanlow check were planted in a randomized complete block design with three replications at two locations in Tennessee: Knoxville and Crossville. The data were recorded for two consecutive years: 2013 and 2014. The result showed a significant genetic variation for biomass yield (p < 0.05), hemicellulose concentration (p < 0.05), and lignin concentration (p < 0.01). The narrow sense heritability estimates for biomass yield was very low (0.10), indicating a possible challenge to improve this trait. A genetic gain of 16.5% is predicted for biomass yield in each cycle of selection by recombining parental clones of 10% of superior progenies.


Sign in / Sign up

Export Citation Format

Share Document