bark stripping
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 28)

H-INDEX

17
(FIVE YEARS 4)

BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
J. S. Nantongo ◽  
B. M. Potts ◽  
T. Frickey ◽  
E. Telfer ◽  
H. Dungey ◽  
...  

Abstract Background Plants are attacked by diverse insect and mammalian herbivores and respond with different physical and chemical defences. Transcriptional changes underlie these phenotypic changes. Simulated herbivory has been used to study the transcriptional and other early regulation events of these plant responses. In this study, constitutive and induced transcriptional responses to artificial bark stripping are compared in the needles and the bark of Pinus radiata to the responses from application of the plant stressor, methyl jasmonate. The time progression of the responses was assessed over a 4-week period. Results Of the 6312 unique transcripts studied, 86.6% were differentially expressed between the needles and the bark prior to treatment. The most abundant constitutive transcripts were related to defence and photosynthesis and their expression did not differ between the needles and the bark. While no differential expression of transcripts were detected in the needles following bark stripping, in the bark this treatment caused an up-regulation and down-regulation of genes associated with primary and secondary metabolism. Methyl jasmonate treatment caused differential expression of transcripts in both the bark and the needles, with individual genes related to primary metabolism more responsive than those associated with secondary metabolism. The up-regulation of genes related to sugar break-down and the repression of genes related with photosynthesis, following both treatments was consistent with the strong down-regulation of sugars that has been observed in the same population. Relative to the control, the treatments caused a differential expression of genes involved in signalling, photosynthesis, carbohydrate and lipid metabolism as well as defence and water stress. However, non-overlapping transcripts were detected between the needles and the bark, between treatments and at different times of assessment. Methyl jasmonate induced more transcriptional responses in the bark than bark stripping, although the peak of expression following both treatments was detected 7 days post treatment application. The effects of bark stripping were localised, and no systemic changes were detected in the needles. Conclusion There are constitutive and induced differences in the needle and bark transcriptome of Pinus radiata. Some expression responses to bark stripping may differ from other biotic and abiotic stresses, which contributes to the understanding of plant molecular responses to diverse stresses. Whether the gene expression changes are heritable and how they differ between resistant and susceptible families identified in earlier studies needs further investigation.


Author(s):  
Judith S. Nantongo ◽  
Brad M. Potts ◽  
Noel W. Davies ◽  
Don Aurik ◽  
Stephen Elms ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 976
Author(s):  
Wojciech Pusz ◽  
Anna Baturo-Cieśniewska ◽  
Agata Kaczmarek-Pieńczewska ◽  
Katarzyna Patejuk ◽  
Paweł Czarnota

The aim of the research was to check whether the healing of bark-stripping wounds of the silver fir tree trunks reduces the share of wood-decomposing fungi, which may be the result of inter-species interactions. The study carried out in Gorce National Park in Polish Western Carpathians analyzed drill holes of sapwood from three types of wounds (fresh, healed and old) on fir trunks with a diameter at breast height (DBH) of 4.0–16.9 cm as a result of bark-stripping by red deer (Cervus elaphus). In the wood of fresh wounds Alternaria alternata (Fr.) Keissl. and Arthrinium arundinis (Corda) Dyko & B. Sutton had the largest share in mycobiota. Phompsis spp. and the species Sydowia polyspora (Bref. & Tavel) E. Müll. and Epicoccum nigrum Link were also isolated. The dominants in old wounds were Eutypa spp., Phomopsis spp. and Cylindrobasidium evolvens (Fr.) Jülich. Healed wounds were dominated by Trichoderma atroviride P. Karst, a fungus antagonistic to many fungal pathogens. Such properties are shared by A. arundinis, especially common in fresh wound wood. It seems that these fungi support the process of wounded tree regeneration (healing of wounds) and limit the activity of wood-decaying fungi in old age, which makes fir survival very high. Thus, even a strong red deer pressure cannot be considered the basic factor determining the dynamics of fir in this part of the Carpathians.


The Holocene ◽  
2021 ◽  
pp. 095968362110332
Author(s):  
Johannes Edvardsson ◽  
Ola Magnell ◽  
Anton Hansson ◽  
Hans Linderson ◽  
Arne Sjöström ◽  
...  

A unique assemblage consisting of 113 pine samples collected from a submerged Mesolithic landscape in the Haväng area, southern Sweden, was examined to assess the presence of large herbivores, as well as changes in wild-game population density and composition. Bark-stripping damages on prehistoric trees is an extremely underutilized source of information about past game-population dynamics, yet our analyzes of wood samples – dated to around 10 500 cal. yr. BP – shows that such material can be successfully used to study the presence and activities of large herbivores, most likely ungulates. To evaluate our results, comparisons have been made with subfossil peatland trees that grew around 6000 years ago, as well as trees from two present day clearcut logging sites in southern Sweden. Furthermore, studies in a wild-game reserve were performed to recognize and understand different types of damages on trees caused by ungulates. Bark-stripping indicate the presence of ungulates, and the rate of damage is commonly associated with the density of the wild game. Bark-stripping was most frequently observed in the submerged wood material from the early Holocene, where damages were detected in 15% of the trees. In comparisons, 11% of the mid-Holocene trees show bark-stripping damages, whereas marks could be detected in the range between 0% and 6% of the trees from the two present-day clearcut logging sites. Our results show that tree-ring analyzes of prehistoric wood can generate information about wild-game dynamics of the past, and thereby being a valuable complement to more commonly used paleoecological and zooarcheological records.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 378
Author(s):  
Shayne Magstadt ◽  
David Gwenzi ◽  
Buddhika Madurapperuma

The prevalence of black bear (Ursus americanus) bark stripping in commercial redwood (Sequoia sempervirens (D. Don) Endl.) timber stands has been increasing in recent years. This stripping is a threat to commercial timber production because of the deleterious effects on redwood tree fitness. This study sought to unveil a remote sensing method to detect these damaged trees early and map their spatial patterns. By developing a timely monitoring method, forest timber companies can manipulate their timber harvesting routines to adapt to the consequences of the problem. We explored the utility of high spatial resolution UAV-collected hyperspectral imagery as a means for early detection of individual trees stripped by black bears. A hyperspectral sensor was used to capture ultra-high spatial and spectral information pertaining to redwood trees with no damage, those that have been recently attacked by bears, and those with old bear damage. This spectral information was assessed using the Jeffries-Matusita (JM) distance to determine regions along the electromagnetic spectrum that are useful for discerning these three-health classes. While we were able to distinguish healthy trees from trees with old damage, we were unable to distinguish healthy trees from recently damaged trees due to the inherent characteristics of redwood tree growth and the subtle spectral changes within individual tree crowns for the time period assessed. The results, however, showed that with further assessment, a time window may be identified that informs damage before trees completely lose value.


2021 ◽  
Author(s):  
Neal Mundahl ◽  
Ryan Walsh

Abstract Goats are being used increasingly to manage woody invasive plants in woodland habitats, but their specific impacts on those plants over a period of time during active, periodic browsing has not been documented. This study investigated bark-stripping by goats browsing on common buckthorn in savanna habitats, focusing on possible size-selective feeding and the cumulative effects of repeated, periodic browsing over a 3-year period. When surveyed after the first browsing period, bark was stripped selectively on buckthorn stems 20 to 60 mm in diameter. Approximately 60% of all stripped stems were completely girdled, but only 14-17% of stems were bark-stripped. After five browsing periods, 66% of standing stems displayed bark stripping and 39% were completely girdled. Buckthorn densities were reduced by 90% compared to the first browsing period, the decline resulting mostly from consumption of foliage and terminal shoots of small (<20 mm) buckthorn and bark-stripping resulting in top-kill in intermediate-sized (20-60 mm) plants. Large buckthorn (>60 mm) were largely unimpacted by goats. Relatively few (28%) seedling buckthorn were browsed by goats, although >90% of 2nd-year plants were browsed. Buckthorn can be managed in part via goat browsing, but repeated, periodic browsing over several to many years may be necessary to produce a significant impact, and other techniques will be needed to eliminate large, seed-producing plants.


2020 ◽  
Author(s):  
◽  
Oskars Krisans ◽  

Climate change causes gradual decline of economic value of Norway spruce forestry except in boreal and hemiboreal forest zones that will remain suitable for this tree species. However, also in this region frequency and scale of damages caused by natural disturbances (abiotic and biotic factors) are expected to increase. Norway spruce will remain its economic significance and role in carbon sequestration in Latvia, if forest management practices will be changed to prevent or minimize the damages caused by natural disturbances. Information on effect of natural disturbances and their interactions on trees is vital for development of recommendations for adaptation of forestry to climate change. The aim of the thesis is to assess the effect of root rot and bark-stripping on possibility of wind induced damages in Norway spruce stands. Tree mechanical stability was primarily determined by its stem volume; however, the presence of damages, caused by biotic agents, such as root rot and bark-stripping, significantly reduced it. Morphometric parameters of Norway spruce stem and root plate differed significantly between stands on drained peat and mineral soils. Root-rot notably and significantly affected mechanical stability of trees regardless of soil type and volume of root-soil plate, resulting in similar reduction of wind load necessary to cause both primary and secondary failure. Consequences of bark-stripping primarily affected root-soil anchorage, more commonly causing uprooting than stem fracture. Most pronounced was reduction of resistance against primary failure. Changing wind climate, high population density of cervids and presence of root-rot will lead to increased risk of damages caused by (repeated) storms and subsequent legacy effects. The survival of forest stands depends on dimensions of trees and exposure time to different damaging agents, and, at current climate and silvicultural practice, was significantly reduced when transitioning into third age class (41-60 years). Targeted forestry, ensuring planting of improved material, lower initial density, timely precommercial thinning and thus ensuring faster reach of the tree dimension required for final harvest will reduce the time when stands are subjected to significant wind damage risk, thus minimizing the possibility of such disturbance and boosting value of Norway spruce stands.


Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1356
Author(s):  
Judith S. Nantongo ◽  
Brad M. Potts ◽  
Hugh Fitzgerald ◽  
Jessica Newman ◽  
Stephen Elms ◽  
...  

Bark stripping by mammals is a major problem for conifer forestry worldwide. In Australia, bark stripping in the exotic plantations of Pinus radiata is mainly caused by native marsupials. As a sustainable management option, we explored the extent to which natural variation in the susceptibility of P. radiata is under genetic control and is thus amenable to genetic improvement. Bark stripping was assessed at ages four and five years in two sister trials comprising 101 and 138 open-pollinated half-sib families. A third younger trial comprising 74 full-sib control-pollinated families was assessed at two and three years after planting. Significant additive genetic variation in bark stripping was demonstrated in all trials, with narrow-sense heritability estimates between 0.06 and 0.14. Within sites, the amount of additive genetic variation detected increased with the level of bark stripping. When strongly expressed across the two sister trials, the genetic signal was stable (i.e., there was little genotype × environment interaction). No significant non-additive effect (specific combining ability effect) on bark stripping was detected in the full-sib family trial, where it was estimated that up to 22.1% reduction in bark stripping might be achieved by selecting 20% of the less susceptible families. Physical traits that were genetically correlated, and likely influenced the amount of bark removed from the trees by the marsupials, appeared to depend upon tree age. In the older trials, these traits included bark features (presence of rough bark, rough bark height, and bark thickness), whereas in the younger trial where rough bark was not developed, it was the presence of obstructive branches or needles on the stem. In the younger trial, a positive genetic correlation between prior height and bark stripping was detected, suggesting that initially faster growing trees exhibit more bark stripping than slower growing trees but later develop rough bark faster and became less susceptible. While the presence of unexplained genetic variation after accounting for these physical factors suggests that other explanatory plant traits may be involved, such as chemical traits, overall the results indicate that selection for reduced susceptibility is possible, with potential genetic gains for deployment and breeding.


Sign in / Sign up

Export Citation Format

Share Document