scholarly journals Recovery of Logged Tropical Montane Rainforests as Potential Habitats for Hainan Gibbon

Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 711
Author(s):  
Kexin Fan ◽  
Yue Xu ◽  
Pengcheng Liu ◽  
Runguo Zang

As the world’s rarest ape, the main threat facing Hainan gibbon (Nomascus hainanus) is habitat degradation and loss caused by human disturbances. The insufficient area and continuous human disturbance in most of the existing habitats can hardly maintain the future recovery and development of the gibbon population. A large area of secondary tropical montane rainforest in recovery was retained in Bawangling National Nature Reserve after disturbance. Therefore, it is of great significance to study the recovery of these secondary forests for the protection and restoration of Hainan gibbon habitat. To explore the recovery of secondary tropical rainforests after different disturbances, and whether they have the potential to serve as the future habitats for Hainan gibbon, we calculated four dynamic indexes (including recruitment rate, mortality/loss rate, relative growth rate and turnover rate) of abundance and basal area for the total community and for food plants of Hainan gibbon based on data from two censuses of secondary forests recovered nearly 45 years after different disturbances (clear-cutting and selective-logging) and old-growth forest of tropical montane rainforest. The results are as follows: (1) There were no significant differences in recruitment rates, mortality rates and turnover rates of abundance and basal area between recovered clear-cutting forests, selectively logged forests and old-growth forests. (2) Abundance, basal area and species of small (1 < DBH ≤ 10 cm) and medium (10 ≤ DBH < 30 cm) food plants in the two disturbed forests were higher, while those of large food plants (DBH ≥ 30 cm) in the two forests were lower than in old-growth forests. (3) For the common food species occurring in all three kinds of communities, the relative growth rate of most small trees in clear-cutting forest was higher than that of old-growth forest. Our research demonstrates that the lack of large food plants is the key limiting factor for the development of the secondary mountain rainforest as habitats for Hainan gibbon at present. However, it has great potential to transform into suitable habitats through targeted restoration and management due to the high recruitment rate and relative growth rate of the small- and medium-sized food plants.

2020 ◽  
Vol 50 (8) ◽  
pp. 726-735
Author(s):  
Sandra Carr ◽  
Guy R. Larocque ◽  
Nancy Luckai ◽  
F. Wayne Bell

Increasing the production of wood fibre from conifer species such as white spruce (Picea glauca (Moench) Voss) is one of many challenges in the management of boreal mixedwood forests. The effects of various competition measures on relative growth and relative growth rate variables were calculated for individual white spruce subject trees. Correlation analysis was used to explore relationships with competitor structural features, including the ratio of competitor basal area to subject tree basal area (CBAS), the ratio of competitor height to subject tree height (AHCS), and the proportion of softwood (FSW). Regression analysis was used to explore relationships with three distance-dependent competition indices. The ratio of subject tree height to diameter at breast height (DBH) (HDR), crown ratio (CR), and crown relative increment rate (CRIR) were significantly correlated with CBAS and AHCS. HDR, CR, CRIR, and DBH relative growth rate were all statistically significantly related to the competition indices. Results indicated that (i) relative growth and relative growth rate measures successfully captured a range of competition, (ii) crowns of trees with larger diameters used their horizontal growing space more efficiently to produce stemwood, and (iii) the proportion of softwood contributing to competition did not appear to influence subject tree production efficiency. Growth efficiency variables have the potential to improve our understanding of boreal mixedwood dynamics.


2006 ◽  
Vol 22 (6) ◽  
pp. 653-661 ◽  
Author(s):  
E. Khurana ◽  
J. S. Singh

Seedling growth under three shade levels was studied at Varanasi, India, for five tree species of tropical dry forest, which differed in life-history traits. Three of these were small-seeded pioneer (Albizia procera, Acacia nilotica and Phyllanthus emblica) and the other two were large-seeded non-pioneer (Terminalia arjuna and Terminalia chebula) species. Seedlings of all the species were subjected to three light levels (80–100%, 20–30% and 3–7% of full sunlight) comparable to sunlit gaps and shaded microsites in the dry forest. After 4 mo of shade treatment, height, basal area, biomass and other growth traits, viz. RGR (relative growth rate), NAR (net assimilation rate), and SLA (specific leaf area) were determined. Etiolation and plasticity indices were calculated. Reduction in seedling height, biomass and relative growth rates and enhancement in SLA due to shade was greater for small-seeded pioneer species. Seedlings from large-seeded non-pioneer species exhibited a stronger etiolation response to shade than seedlings from small-seeded species. Phenotypic plasticity indices for basal area, plant biomass and relative growth rate were greater for the three small-seeded early successional species (A. procera, A. nilotica and P. emblica), indicating their specialization in a more favourable light environment such as large gaps and forest peripheries. The non-pioneer and pioneer species differed only in the degree of shade tolerance, and we suggest that dry forest species cannot be strictly categorized into two distinct groups (shade tolerant vs. intolerant), rather shade preference and gap preference would be the more expressive terms. Marked environmental heterogeneity in terms of irradiance and the phenology of dry tropical trees permits coexistence of species of varying ecological traits, contributing to the maintenance of diversity in the dry forest.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Martina Alrutz ◽  
Jorge Antonio Gómez Díaz ◽  
Ulf Schneidewind ◽  
Thorsten Krömer ◽  
Holger Kreft

Background: Tropical montane forests are important reservoirs of carbon and biodiversity but are threatened by deforestation and climate change. It is important to understand how forest structure and aboveground biomass change along gradients of elevation and succession. Questions: What are the interactive effect of elevation and two stages of succession on forest structure parameters? Studied species: Tree communities. Study site and dates: Cofre de Perote, Veracruz, Mexico. August to December 2015. Methods: We studied four sites along an elevational gradient (500, 1,500, 2,500, and 3,500 m). At each elevation and each forest type, we established five 20 × 20 m plots (n = 40 plots). Within each plot, we measured stem density, mean diameter at breast height (dbh), and tree height and derived basal area and aboveground biomass (AGB). Results: AGB peaked at 2,500 m and was significantly related to elevation and succession, with higher values in old-growth forests than in secondary forests at higher altitudes. Lower values of mean dbh and basal area were found at higher elevations. At the lowest elevation, both successional stages had the same values of stem density and AGB. At both lower elevations, secondary forests had higher values of dbh and basal area. There were high biomass stocks in the old-growth forest at 2,500 and 3,500 m. Conclusions: Old-growth forests at higher elevations are threatened by deforestation, consequently these remaining fragments must be preserved because of their storage capacity for biomass and their ability to mitigate climate change.


Sign in / Sign up

Export Citation Format

Share Document