scholarly journals Monitoring of Beech Glued Laminated Timber and Delamination Resistance of Beech Finger-Joints in Varying Ambient Climates

Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1672
Author(s):  
Hannes Stolze ◽  
Mathias Schuh ◽  
Sebastian Kegel ◽  
Connor Fürkötter-Ziegenbein ◽  
Christian Brischke ◽  
...  

In this study, varying ambient climates were simulated in a test building by changing temperature and relative humidity. Beech glued laminated timber (glulam, Fagus sylvatica, L.) was freshly installed in the test building and monitoring of the change in wood moisture content of the glulam resulting from the variations in climate was carried out. Subsequently, finger-jointed beech specimens were exposed to the variations in relative humidity measured in the course of the monitoring experiment on a laboratory scale, and thus an alternating climate regime was derived from the conditions in the test building. Its influence on the delamination of the finger-joints was evaluated. In addition, it was examined whether beech finger-joints using commercial adhesive systems fulfil the normative requirements for delamination resistance according to EN 301 (2018) and whether different bonding-wood moisture levels have an effect on the delamination of the finger-joints. In the context of the monitoring experiment, there was a clear moisture gradient in the beech glulam between the inner and near-surface wood. The applied adhesive systems showed almost the same delamination resistance after variation of relative humidity. The normative requirements were met by all PRF-bonded and by most PUR-bonded beech finger-joints with higher bonding wood moisture content.

2021 ◽  
Vol 30 (1) ◽  
pp. e002
Author(s):  
Juan I. Fernández-Golfín ◽  
Maria Conde Garcia ◽  
Marta Conde Garcia

Aim of study: To obtain improved models to predict, with an error of less than ± 2.0%, the gravimetric moisture content in four different softwoods commonly present in the Spanish and European markets, based on electrical resistance measurements. This improved moisture content estimation is useful not only for assessing the quality of wood products, especially in the case of laminated products, during the transformation and delivery process, but also for accurately monitoring the evolution of moisture in wood present in bridges and buildings, which is of great importance for its maintenance and service life improvement.Area of study: The study was carried out on samples of Scots, laricio, radiata and  maritime pines of Spanish provenances.Material and methods: On 50x50x20 mm3 solid wood samples (36 per species, 9 per condition), conditioned at 20ºC (±05ºC) and 40±5%, 65±5%, 80±5% or 90±5% Relative Humidity (RH), electrical resistance and oven-dry moisture content was measured. The Samuelsson's model was fitted to data to explain the relationship between the two variables. The accuracy of the model was evaluated by the use of an external sample.Main results: With the proposed mathematical functions the wood moisture content can be estimated with an error of ±0.9% in the four species, confirming the effectiveness of this nondestructive methodology for accurate estimation and monitoring of moisture content.Research highlights: our results allow the improvement of the moisture content estimation technique by resistance-type methodologies.Keywords: Resistance-type moisture meter; species correction.Abbreviations used: MC: Moisture content; RH: relative Humidity; R: electrical resistance; RP: wood electrical resistance measured parallel to the grain; RT: electrical resistance measured perpendicular (transversally) to the grain; GM-MC: gravimetrically measured moisture content.


1953 ◽  
Vol 1 (1) ◽  
pp. 102 ◽  
Author(s):  
FJ Gay

An account is given of certain aspects of the biology of Lyctus brunneus (Steph.). Female beetles are able to oviposit within 24 hr. after emerging from infested timber and deposit an average of more than 70 eggs per female over a period of 1-2 weeks. Eggs are deposited at depths of 1.0-6.5 mm. in the wood vessels, preferentially from a transverse surface, but also through radial and tangential faces. The incubation period of the eggs ranges from about 1 week at 26�C, to 3 weeks at 15�C. The egg-adult developmental period ranges from 4 months at 26�C. to 16 months or more at 15�C. Under optimal conditions of temperature, relative humidity (and hence wood moisture content), and nutrition, the life cycle may be as short as 2 months. The sex ratio of L. brunneus is 1 : 1 and the adult beetles live from 2.5 to 7 weeks, depending upon the temperature, females being somewhat longer-lived than males. The larvae of L. brunneus are somewhat more resistant to heat treatment than are the eggs, but one 1/2hr. exposure to 50�C. is completely lethal to both stages.


2021 ◽  
Vol 30 (1) ◽  
pp. e002
Author(s):  
Juan I. Fernández-Golfín ◽  
Maria Conde Garcia ◽  
Marta Conde Garcia

Aim of study: To obtain improved models to predict, with an error of less than ± 2.0%, the gravimetric moisture content in four different softwoods commonly present in the Spanish and European markets, based on electrical resistance measurements. This improved moisture content estimation is useful not only for assessing the quality of wood products, especially in the case of laminated products, during the transformation and delivery process, but also for accurately monitoring the evolution of moisture in wood present in bridges and buildings, which is of great importance for its maintenance and service life improvement.Area of study: The study was carried out on samples of Scots, laricio, radiata and  maritime pines of Spanish provenances.Material and methods: On 50x50x20 mm3 solid wood samples (36 per species, 9 per condition), conditioned at 20ºC (±05ºC) and 40±5%, 65±5%, 80±5% or 90±5% Relative Humidity (RH), electrical resistance and oven-dry moisture content was measured. The Samuelsson's model was fitted to data to explain the relationship between the two variables. The accuracy of the model was evaluated by the use of an external sample.Main results: With the proposed mathematical functions the wood moisture content can be estimated with an error of ±0.9% in the four species, confirming the effectiveness of this nondestructive methodology for accurate estimation and monitoring of moisture content.Research highlights: our results allow the improvement of the moisture content estimation technique by resistance-type methodologies.Keywords: Resistance-type moisture meter; species correction.Abbreviations used: MC: Moisture content; RH: relative Humidity; R: electrical resistance; RP: wood electrical resistance measured parallel to the grain; RT: electrical resistance measured perpendicular (transversally) to the grain; GM-MC: gravimetrically measured moisture content.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 2645-2655
Author(s):  
Yuehua Zhu ◽  
Yaoli Zhang ◽  
Biao Pan

The thermal conductivity and the deformation of wood from the Taxodium hybrid ‘Zhongshanshan’ were studied in the process of heat transfer. The results showed that the average thermal conductivity of this wood was 0.1257 W/(m·K) under the condition of 12% wood moisture content and 30 °C heat transfer temperature. When the testing temperature exceeded 0 °C, the thermal conductivity increased linearly with both temperature and wood moisture content and was affected by the moisture content of the wood. During the heat transfer process, the deformation of features caused repeated swelling and shrinkage in the longitudinal, radial, and tangential directions. The dimensional change was greatly affected by the wood’s moisture content and was less affected by the temperature. These results are of great meaning for the study of the heat transfer process of Taxodium hybrid ‘Zhongshanshan’ wood. Furthermore, it provides a scientific basis for the heat preservation effect, drying treatment, and pyrolysis treatment of Taxodium hybrid ‘Zhongshanshan’ wood for use as a building material.


Sign in / Sign up

Export Citation Format

Share Document