scholarly journals Improving Individual Tree Crown Delineation and Attributes Estimation of Tropical Forests Using Airborne LiDAR Data

Forests ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 759 ◽  
Author(s):  
Wan Wan Mohd Jaafar ◽  
Iain Woodhouse ◽  
Carlos Silva ◽  
Hamdan Omar ◽  
Khairul Abdul Maulud ◽  
...  

Individual tree crown (ITC) segmentation is an approach to isolate individual tree from the background vegetation and delineate precisely the crown boundaries for forest management and inventory purposes. ITC detection and delineation have been commonly generated from canopy height model (CHM) derived from light detection and ranging (LiDAR) data. Existing ITC segmentation methods, however, are limited in their efficiency for characterizing closed canopies, especially in tropical forests, due to the overlapping structure and irregular shape of tree crowns. Furthermore, the potential of 3-dimensional (3D) LiDAR data is not fully realized by existing CHM-based methods. Thus, the aim of this study was to develop an efficient framework for ITC segmentation in tropical forests using LiDAR-derived CHM and 3D point cloud data in order to accurately estimate tree attributes such as the tree height, mean crown width and aboveground biomass (AGB). The proposed framework entails five major steps: (1) automatically identifying dominant tree crowns by implementing semi-variogram statistics and morphological analysis; (2) generating initial tree segments using a watershed algorithm based on mathematical morphology; (3) identifying “problematic” segments based on predetermined set of rules; (4) tuning the problematic segments using a modified distance-based algorithm (DBA); and (5) segmenting and counting the number of individual trees based on the 3D LiDAR point clouds within each of the identified segment. This approach was developed in a way such that the 3D LiDAR points were only examined on problematic segments identified for further evaluations. 209 reference trees with diameter at breast height (DBH) ≥ 10 cm were selected in the field in two study areas in order to validate ITC detection and delineation results of the proposed framework. We computed tree crown metrics (e.g., maximum crown height and mean crown width) to estimate aboveground biomass (AGB) at tree level using previously published allometric equations. Accuracy assessment was performed to calculate percentage of correctly detected trees, omission and commission errors. Our method correctly identified individual tree crowns with detection accuracy exceeding 80 percent at both forest sites. Also, our results showed high agreement (R2 > 0.64) in terms of AGB estimates using 3D LiDAR metrics and variables measured in the field, for both sites. The findings from our study demonstrate the efficacy of the proposed framework in delineating tree crowns, even in high canopy density areas such as tropical rainforests, where, usually the traditional algorithms are limited in their performances. Moreover, the high tree delineation accuracy in the two study areas emphasizes the potential robustness and transferability of our approach to other densely forested areas across the globe.

Author(s):  
Yogendra K. Karna ◽  
Trent D. Penman ◽  
Cristina Aponte ◽  
Lauren T. Bennett

Fire-tolerant eucalypt forests of south eastern Australia are assumed to fully recover from even the most intense fires but surprisingly very few studies have quantitatively assessed that recovery. Accurate assessment of horizontal and vertical attributes of tree crowns after fire is essential to understand the fire’s legacy effects on tree growth and on forest structure. In this study, we quantitatively assessed individual tree crowns 8.5 years after a 2009 wildfire that burnt extensive areas of eucalypt forest in temperate Australia. We used airborne lidar data validated with field measurements to estimate multiple metrics that quantified the cover, density, and vertical distribution of individual-tree crowns in 51 plots of 0.05 ha in fire-tolerant eucalypt forest across four wildfire severity types (unburnt, low, moderate, high). Significant differences in the field-assessed mean height of fire scarring as a proportion of tree height, and in the proportions of trees with epicormic (stem) resprouts were consistent with the gradation in fire severity. Linear mixed-effects models indicated persistent effects of both moderate- and high-severity wildfire on tree crown architecture. Trees at high-severity sites had significantly less crown projection area and live crown width as a proportion of total crown width than those at unburnt and low-severity sites. Significant differences in lidar-based metrics (crown cover, evenness, leaf area density profiles) indicated that tree crowns at moderate- and high-severity sites were comparatively narrow and more evenly distributed down the tree stem. These conical-shaped crowns contrasted sharply with the rounded crowns of trees at unburnt and low-severity sites, and likely influenced both tree productivity and the accuracy of biomass allometric equations for nearly a decade after the fire. Our data provide a clear example of the utility of airborne lidar data for quantifying the impacts of disturbances at the scale of individual trees. Quantified effects of contrasting fire severities on the structure of resprouter tree crowns provide a strong basis for interpreting post-fire patterns in forest canopies and vegetation profiles in lidar and other remotely-sensed data at larger scales.


2019 ◽  
Vol 11 (20) ◽  
pp. 2433 ◽  
Author(s):  
Yogendra K. Karna ◽  
Trent D. Penman ◽  
Cristina Aponte ◽  
Lauren T. Bennett

The fire-tolerant eucalypt forests of south eastern Australia are assumed to fully recover from even the most intense fires; however, surprisingly, very few studies have quantitatively assessed that recovery. The accurate assessment of horizontal and vertical attributes of tree crowns after fire is essential to understand the fire’s legacy effects on tree growth and on forest structure. In this study, we quantitatively assessed individual tree crowns 8.5 years after a 2009 wildfire that burnt extensive areas of eucalypt forest in temperate Australia. We used airborne LiDAR data validated with field measurements to estimate multiple metrics that quantified the cover, density, and vertical distribution of individual-tree crowns in 51 plots of 0.05 ha in fire-tolerant eucalypt forest across four wildfire severity types (unburnt, low, moderate, high). Significant differences in the field-assessed mean height of fire scarring as a proportion of tree height and in the proportions of trees with epicormic (stem) resprouts were consistent with the gradation in fire severity. Linear mixed-effects models indicated persistent effects of both moderate and high-severity wildfire on tree crown architecture. Trees at high-severity sites had significantly less crown projection area and live crown width as a proportion of total crown width than those at unburnt and low-severity sites. Significant differences in LiDAR -based metrics (crown cover, evenness, leaf area density profiles) indicated that tree crowns at moderate and high-severity sites were comparatively narrow and more evenly distributed down the tree stem. These conical-shaped crowns contrasted sharply with the rounded crowns of trees at unburnt and low-severity sites and likely influenced both tree productivity and the accuracy of biomass allometric equations for nearly a decade after the fire. Our data provide a clear example of the utility of airborne LiDAR data for quantifying the impacts of disturbances at the scale of individual trees. Quantified effects of contrasting fire severities on the structure of resprouter tree crowns provide a strong basis for interpreting post-fire patterns in forest canopies and vegetation profiles in Light Detection and Ranging (LiDAR) and other remotely-sensed data at larger scales.


2020 ◽  
Vol 12 (3) ◽  
pp. 571 ◽  
Author(s):  
Chen ◽  
Xiang ◽  
Moriya

Information for individual trees (e.g., position, treetop, height, crown width, and crown edge) is beneficial for forest monitoring and management. Light Detection and Ranging (LiDAR) data have been widely used to retrieve these individual tree parameters from different algorithms, with varying successes. In this study, we used an iterative Triangulated Irregular Network (TIN) algorithm to separate ground and canopy points in airborne LiDAR data, and generated Digital Elevation Models (DEM) by Inverse Distance Weighted (IDW) interpolation, thin spline interpolation, and trend surface interpolation, as well as by using the Kriging algorithm. The height of the point cloud was assigned to a Digital Surface Model (DSM), and a Canopy Height Model (CHM) was acquired. Then, four algorithms (point-cloud-based local maximum algorithm, CHM-based local maximum algorithm, watershed algorithm, and template-matching algorithm) were comparatively used to extract the structural parameters of individual trees. The results indicated that the two local maximum algorithms can effectively detect the treetop; the watershed algorithm can accurately extract individual tree height and determine the tree crown edge; and the template-matching algorithm works well to extract accurate crown width. This study provides a reference for the selection of algorithms in individual tree parameter inversion based on airborne LiDAR data and is of great significance for LiDAR-based forest monitoring and management.


Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 605 ◽  
Author(s):  
Jianyu Gu ◽  
Heather Grybas ◽  
Russell G. Congalton

Improvements in computer vision combined with current structure-from-motion photogrammetric methods (SfM) have provided users with the ability to generate very high resolution structural (3D) and spectral data of the forest from imagery collected by unmanned aerial systems (UAS). The products derived by this process are capable of assessing and measuring forest structure at the individual tree level for a significantly lower cost compared to traditional sources such as LiDAR, satellite, or aerial imagery. Locating and delineating individual tree crowns is a common use of remotely sensed data and can be accomplished using either UAS-based structural or spectral data. However, no study has extensively compared these products for this purpose, nor have they been compared under varying spatial resolution, tree crown sizes, or general forest stand type. This research compared the accuracy of individual tree crown segmentation using two UAS-based products, canopy height models (CHM) and spectral lightness information obtained from natural color orthomosaics, using maker-controlled watershed segmentation. The results show that single tree crowns segmented using the spectral lightness were more accurate compared to a CHM approach. The optimal spatial resolution for using lightness information and CHM were found to be 30 and 75 cm, respectively. In addition, the size of tree crowns being segmented also had an impact on the optimal resolution. The density of the forest type, whether predominately deciduous or coniferous, was not found to have an impact on the accuracy of the segmentation.


2020 ◽  
Vol 12 (8) ◽  
pp. 1288 ◽  
Author(s):  
José R. G. Braga ◽  
Vinícius Peripato ◽  
Ricardo Dalagnol ◽  
Matheus P. Ferreira ◽  
Yuliya Tarabalka ◽  
...  

Tropical forests concentrate the largest diversity of species on the planet and play a key role in maintaining environmental processes. Due to the importance of those forests, there is growing interest in mapping their components and getting information at an individual tree level to conduct reliable satellite-based forest inventory for biomass and species distribution qualification. Individual tree crown information could be manually gathered from high resolution satellite images; however, to achieve this task at large-scale, an algorithm to identify and delineate each tree crown individually, with high accuracy, is a prerequisite. In this study, we propose the application of a convolutional neural network—Mask R-CNN algorithm—to perform the tree crown detection and delineation. The algorithm uses very high-resolution satellite images from tropical forests. The results obtained are promising—the R e c a l l , P r e c i s i o n , and F 1 score values obtained were were 0.81 , 0.91 , and 0.86 , respectively. In the study site, the total of tree crowns delineated was 59,062 . These results suggest that this algorithm can be used to assist the planning and conduction of forest inventories. As the algorithm is based on a Deep Learning approach, it can be systematically trained and used for other regions.


Sign in / Sign up

Export Citation Format

Share Document