scholarly journals Efficient Co-Utilization of Biomass-Derived Mixed Sugars for Lactic Acid Production by Bacillus coagulans Azu-10

Fermentation ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 28
Author(s):  
Mohamed Ali Abdel-Rahman ◽  
Saad El-Din Hassan ◽  
Hassan M.A. Alrefaey ◽  
Tamer Elsakhawy

Lignocellulosic and algal biomass are promising substrates for lactic acid (LA) production. However, lack of xylose utilization and/or sequential utilization of mixed-sugars (carbon catabolite repression, CCR) from biomass hydrolysates by most microorganisms limits achievable titers, yields, and productivities for economical industry-scale production. This study aimed to design lignocellulose-derived substrates for efficient LA production by a thermophilic, xylose-utilizing, and inhibitor-resistant Bacillus coagulans Azu-10. This strain produced 102.2 g/L of LA from 104 g/L xylose at a yield of 1.0 g/g and productivity of 3.18 g/L/h. The CCR effect and LA production were investigated using different mixtures of glucose (G), cellobiose (C), and/or xylose (X). Strain Azu-10 has efficiently co-utilized GX and CX mixture without CCR; however, total substrate concentration (>75 g/L) was the only limiting factor. The strain completely consumed GX and CX mixture and homoferemnatively produced LA up to 76.9 g/L. On the other hand, fermentation with GC mixture exhibited obvious CCR where both glucose concentration (>25 g/L) and total sugar concentration (>50 g/L) were the limiting factors. A maximum LA production of 50.3 g/L was produced from GC mixture with a yield of 0.93 g/g and productivity of 2.09 g/L/h. Batch fermentation of GCX mixture achieved a maximum LA concentration of 62.7 g/L at LA yield of 0.962 g/g and productivity of 1.3 g/L/h. Fermentation of GX and CX mixture was the best biomass for LA production. Fed-batch fermentation with GX mixture achieved LA production of 83.6 g/L at a yield of 0.895 g/g and productivity of 1.39 g/L/h.

2015 ◽  
Vol 31 (1) ◽  
pp. 581-590 ◽  
Author(s):  
Negin Ahmadi ◽  
Kianoush Khosravi-Darani ◽  
Solmaz Zarean-Shahraki ◽  
M Mortazavian ◽  
S. M Mashayekh

3 Biotech ◽  
2018 ◽  
Vol 8 (4) ◽  
Author(s):  
Luciana Fontes Coelho ◽  
Susan Michelz Beitel ◽  
Daiane Cristina Sass ◽  
Paulo Marcelo Avila Neto ◽  
Jonas Contiero

Processes ◽  
2018 ◽  
Vol 6 (10) ◽  
pp. 175 ◽  
Author(s):  
Yuming Zhang ◽  
Mengran Li ◽  
Tian Nie ◽  
Zhihua Ni

Phragmites australis straw (PAS) is an abundant and renewable wetland lignocellulose. Bacillus coagulans IPE22 is a robust thermophilic strain with pentose-utilizing capability and excellent resistance to growth inhibitors. This work is focused on the process study of lactic acid (LA) production from P. australis lignocellulose which has not been attempted previously. By virtue of thermophilic feature of strain IPE22, two fermentation processes (i.e., separated process and integrated process), were developed and compared under non-sterilized conditions. The integrated process combined dilute-acid pretreatment, hemicellulosic hydrolysates fermentation, and cellulose utilization. Sugars derived from hemicellulosic hydrolysates and cellulose enzymatic hydrolysis were efficiently fermented to LA in a single vessel. Using the integrated process, 41.06 g LA was produced from 100 g dry PAS. The established integrated process results in great savings in terms of time and labor, and the fermentation process under non-sterilized conditions is easy to scale up for economical production of lactic acid from PAS.


2019 ◽  
Vol 21 (1) ◽  
pp. 113-127 ◽  
Author(s):  
Juliana Romo-Buchelly ◽  
María Rodríguez-Torres ◽  
Fernando Orozco-Sánchez

Lactic acid (LA) is an organic compound used in several industries, such as food, textile, chemical, and pharmaceutical. The global interest  in  this  product  is  due  to  its  use  for  the  synthesis  of  numerous  chemical  compounds,  including  polylactic  acid,  a  biode-gradable thermoplastic and substitute for petroleum-derived plastics. An in-depth overview of the use of industrial and household wastes as inexpensive substrates in order to reduce the cost of LA production is presented. A review is carried out of the biotech-nological aspects that must be taken into account when using some wastes with high transformation potential to produce LA in a submerged  culture,  as  well  recommendations  for  their  use.  The  advantages  and  disadvantages  of  different  types  of  treatments used for the transformation of waste into suitable substrates are considered. Several methods of fermentation, as well as genetic strategies for increasing the production, are summarized and compared. It is expected that in a few years there will be many ad-vances in these areas that will allow greater large-scale production of LA using agroindustrial or household wastes, with potential positive economic and environmental impact in some regions of the planet.


Fermentation ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 36 ◽  
Author(s):  
Agata Olszewska-Widdrat ◽  
Maria Alexandri ◽  
José Pablo López-Gómez ◽  
Roland Schneider ◽  
Michael Mandl ◽  
...  

Sweet sorghum juice (SSJ) was evaluated as fermentation substrate for the production of l-lactic acid. A thermophilic Bacillus coagulans isolate was selected for batch fermentations without the use of additional nutrients. The first batch of SSJ (Batch A) resulted on higher lactic acid concentration, yield and productivity with values of 78.75 g∙L−1, 0.78 g∙g−1 and 1.77 g∙L−1 h−1, respectively. Similar results were obtained when the process was transferred into the pilot scale (50 L), with corresponding values of 73 g∙L−1, 0.70 g∙g−1 and 1.47 g∙L−1 h−1. A complete downstream process scheme was developed in order to separate lactic acid from the fermentation components. Coarse and ultra-filtration were employed as preliminary separation steps. Mono- and bipolar electrodialysis, followed by chromatography and vacuum evaporation were subsequently carried out leading to a solution containing 905.8 g∙L−1 lactic acid, with an optical purity of 98.9%. The results of this study highlight the importance of the downstream process with respect to using SSJ for lactic acid production. The proposed downstream process constitutes a more environmentally benign approach to conventional precipitation methods.


Sign in / Sign up

Export Citation Format

Share Document