scholarly journals A Novel Approach to Realizing Low-Cost Plasmonic Optical Fiber Sensors: Light-Diffusing Fibers Covered by Thin Metal Films

Fibers ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 34 ◽  
Author(s):  
Nunzio Cennamo ◽  
Luigi Zeni ◽  
Francesco Arcadio ◽  
Ester Catalano ◽  
Aldo Minardo

We have investigated, in a numerical and experimental way, a refractive index (RI) sensor based on surface plasmon resonance (SPR) in a silver-coated light-diffusing fiber (LDF). The experimental tests were conducted using water-glycerine mixtures with refractive indices ranging from 1.332 to 1.388. In the considered refractive index range, the experimental results show a sensitivity of the SPR wavelength to the outer medium’s RI ranging from 2600 to 4700 nm/RIU, which is larger than the sensitivity recently reported for a gold-coated LDF sensor (1200 to 4000nm/RIU). The silver-coated sensor is also shown to ensure a higher signal-to-noise ratio (SNR) compared to the gold-coated sensor.

2018 ◽  
Vol 879 ◽  
pp. 227-233
Author(s):  
Weeratouch Pongruengkiat ◽  
Thitika Jungpanich ◽  
Kodchakorn Ittipornnuson ◽  
Suejit Pechprasarn ◽  
Naphat Albutt

Refractive index and Abbe number are major physical properties of optical materials including glasses and transparent polymers. Refractive index is, in fact, not a constant number and is varied as a function of optical wavelength. The full refractive index spectrum can be obtained using a spectrometer. However, for optical component designers, three refractive indices at the wavelengths of 486.1 nm, 589.3 nm and 656.3 nm are usually sufficient for most of the design tasks, since the rest of the spectrum can be predicted by mathematical models and interpolation. In this paper, we propose a simple optical instrumental setup that determines the refractive indices at three wavelengths and the Abbe number of solid and liquid materials.


2020 ◽  
Vol 8 (4) ◽  
Author(s):  
Fengfeng Zhou ◽  
Seunghwan Jo ◽  
Xingyu Fu ◽  
Jung-Ting Tsai ◽  
Martin Byung-Guk Jun

Abstract In this research, we proposed fabrication process of optical fiber sensors using femtosecond laser and their applications. A beam of femtosecond laser was focused by an objective lens in the optical fiber. By testing different conditions, a group of machining parameters was found that achieve a minimum machining resolution of 3.2 μm. To ablate the core of the optical fiber, which is buried deep inside the cladding, precisely, part of the cladding was removed to expose the core as close as possible to the air. By making a complex pattern to modify the optical path of the laser inside an optical fiber, a sensitivity of 942.8–1015.6 nm per refractive index unit (nm/RIU) was obtained for liquid refractive index sensing. For another sensor, a sensitivity of 1.38 × 105 nm/RIU was obtained, which is high enough to detect small amount of refractive index change of air. It is known to be the first time that we fabricated a complex microstructure in an optical fiber to modify the propagation of the light using femtosecond laser. This research shows the possibility of a complex modification of light in an optical fiber using laser machining.


2019 ◽  
Vol 46 (8) ◽  
pp. 0806003
Author(s):  
李鲁川 Luchuan Li ◽  
卢斌 Bin Lu ◽  
王校 Xiao Wang ◽  
梁嘉靖 Jiajing Liang ◽  
郑汉荣 Hanrong Zheng ◽  
...  

1993 ◽  
Vol 15 (6) ◽  
pp. 227-232 ◽  
Author(s):  
Ivo M. Raimundo, Jr. ◽  
Celio Pasquini

This paper describes a simple low-cost multichannel visible spectrophotometer built with an RL512G EGG-Reticon photodiode array. A symmetric Czerny-Turner optical design was employed; instrument control was via a single-board microcomputer based on the 8085 Intel microprocessor. Spectral intensity data are stored in the single-board's RAM and then transferred to an IBM-AT 3865X compatible microcomputer through a RS-232C interface. This external microcomputer processes the data to recover transmittance, absorbance or relative intensity of the spectra. The signal-to-noise ratio and dynamic range were improved by using variable integration times, which increase during the same scan; and by the use of either weighted or unweighted sliding average of consecutive diodes. The instrument is suitable for automatic methods requiring quasi-simultaneous multiwavelength detections, such as multivariative calibration and flow-injection gradient scan techniques.


2011 ◽  
Vol 284-286 ◽  
pp. 2251-2254
Author(s):  
Zhao Gang Nie ◽  
Xin Zhong Li ◽  
Yu Ping Tai ◽  
Ki Soo Lim ◽  
Myeongkyu Lee

The feasibility of three-dimensional optical bit memory is demonstrated by using the change of fluorescence and refractive index in Sm(DBM)3Phen-doped and un-doped Poly(methyl methacrylate). After a femtosecond pulsed laser irradiation, a refractive-index bit and a fluorescent bit can be formed at the same position inside the bulk sample. Multilayer patterns recorded by tightly focusing the pulsed laser beam were read out by a reflection-type fluorescent confocal microscope, which can detect the reflection signal and also the fluorescent signal of the stored bits. The signal-to-noise ratio via the two retrieval modes was compared as a function of recording depth. The stored bits were retrieved with a high signal-to-noise ratio in the absence of any crosstalk and the detection of the fluorescent signal enables retrieval of the stored bits with a higher S/N ratio.


2005 ◽  
Vol 127 (6) ◽  
pp. 1035-1040 ◽  
Author(s):  
R. Venkateswaran ◽  
Chris Boldt ◽  
J. Parthasarathy ◽  
B. Ziaie ◽  
A. G. Erdman ◽  
...  

The recording of neural ensembles in awake, behaving rats has been an extremely successful experimental paradigm, providing demonstrable scientific advances. Dynamic control of the position of the implanted electrodes is of key importance as mobile electrodes provide a better signal-to-noise ratio and a better cell/electrode yield than nonmobile electrodes. Here we describe the use of low cost, soon to be commercially available dc motors to successfully control the depth of electrodes. The prototype designed is approximately 30mm in diameter and 50mm in length and weighed about 30gms. This paper presents the results of linear displacements of electrodes achievable with this motorized microdrive.


Sign in / Sign up

Export Citation Format

Share Document