scholarly journals Tree-Ring Based Reconstruction of Historical Fire in an Endangered Ecosystem in the Florida Keys

Fire ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 79
Author(s):  
Lauren A. Stachowiak ◽  
Maegen L. Rochner ◽  
Elizabeth A. Schneider ◽  
Grant L. Harley ◽  
Savannah A. Collins-Key ◽  
...  

Big Pine Key, Florida, is home to one of Earth’s largest swaths of the critically-endangered dry forests. Known as pine rocklands, this fire-adapted ecosystem must experience regular fire to persist and remain healthy. Pine rocklands are composed of a sole canopy species: the South Florida slash pine (Pinus elliottii var. densa), along with a dense understory of various woody and herbaceous species, and minimal surface moisture and soil development. Slash pine record wildfire activity of the surrounding area via fire scars preserved within the annual tree rings formed by the species. Our study used dendrochronology to investigate the fire history of the pine rocklands on Big Pine Key, specifically within and around the National Key Deer Refuge (NKDR) because it is the largest segment of unfragmented pine rockland on the island. We combined the results found within the NKDR with those of a previous study completed in 2011, and incorporated historical documents and reports of prescribed and natural fires through November 2019 into our evaluation of fire history on Big Pine Key. We conclude that prescribed burning practices are vital to truly restore natural fire behavior, and repeated burning on these islands in the future must be prioritized.

2013 ◽  
Vol 22 (3) ◽  
pp. 394 ◽  
Author(s):  
Grant L. Harley ◽  
Henri D. Grissino-Mayer ◽  
Sally P. Horn

We focussed on the influence of historical fire and varied fire management practices on the structure of globally endangered pine rockland ecosystems on two adjacent islands in the Florida Keys: Big Pine Key and No Name Key. We reconstructed fire history in two stands from fire scars on South Florida slash pines (Pinus elliottii Engelm. var. densa Little & Dor.) that were accurately dated using dendrochronology, and quantified stand structure to infer successional trajectories. Fire regimes on Big Pine Key and No Name Key over the past 150 years differed in fire return interval and spatial extent. Fire scar analysis indicated that fires burnt at intervals of 6 and 9 years (Weibull median probability interval) on Big Pine Key and No Name Key with the majority of fires occurring late in the growing season. On Big Pine Key, pine recruitment was widespread, likely due to multiple, widespread prescribed burns conducted since 2000. No Name Key experienced fewer fires than Big Pine Key, but pines recruited at the site from at least the 1890s through the 1970s. Today, pine recruitment is nearly absent on No Name Key, where fire management practices since 1957 could result in loss of pine rockland habitat.


Fire ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 48
Author(s):  
Kira M. Hoffman ◽  
Sara B. Wickham ◽  
William S. McInnes ◽  
Brian M. Starzomski

Fire exclusion and suppression has altered the composition and structure of Garry oak and associated ecosystems in British Columbia. The absence of frequent low severity ground fires has been one of the main contributors to dense patches of non-native grasses, shrubs, and encroaching Douglas-fir trees in historical Garry oak dominated meadows. This case study uses remote sensing and dendrochronology to reconstruct the stand dynamics and long-term fire history of a Garry oak meadow situated within Helliwell Provincial Park located on Hornby Island, British Columbia. The Garry oak habitat in Helliwell Park has decreased by 50% since 1950 due to conifer encroachment. Lower densities and mortalities of Garry oak trees were associated with the presence of overstory Douglas-fir trees. To slow conifer encroachment into the remaining Garry oak meadows, we recommend that mechanical thinning of Douglas-fir be followed by a prescribed burning program. Reintroducing fire to Garry oak ecosystems can restore and maintain populations of plants, mammals, and insects that rely on these fire resilient habitats.


The Holocene ◽  
2020 ◽  
Vol 31 (1) ◽  
pp. 28-37
Author(s):  
Gina E Hannon ◽  
Karen Halsall ◽  
Chiara Molinari ◽  
Erin Stoll ◽  
Diana Lilley ◽  
...  

Palaeoecological studies can identify past trends in vegetation communities and processes over long time scales. Pollen, plant macrofossils and charcoal analyses are used to reconstruct vegetation over the last 6400 years and provide information about former human impact and disturbance regimes in Färnebofjärden National Park, Central Sweden. Three specific conservation planning topics were addressed: (1) the changing ratio of conifers to broadleaved trees; (2) the origin and history of the river meadows and the biodiverse Populus tremula meadows; (3) the role of fire in the maintenance of biological values. Early diverse mixed broadleaved forest assemblages with pine were followed by significant declines of the more thermophilic forest elements prior to the expansion of spruce in the Iron Age. The rise to dominance of spruce was a ‘natural’ process that has been exaggerated by anthropogenic disturbance to artificially high levels today. The initial river meadow communities were facilitated by fire and frequent flooding events, but subsequent dynamics have more definitely been supported by human activities. Rural abandonment during the last 100 years has led to woody successions. Fire has been a continual disturbance factor with an influence on conservation issues such as Picea abies dominance and the maintenance of diverse, non-forest communities. Present occurrence of fire is unusually low, but natural fire frequencies are increasing in the region.


2021 ◽  
Author(s):  
Andrew Praciak

Abstract P. elliottii var. elliottii is an important timber species native to the lower coastal plain within the southeastern USA. Because of its rapid early growth and its production of highly valuable wood products, it has been widely introduced into other countries. As an exotic, it is used in Africa, especially in southern Africa, and in Australia and South America for various products ranging from lumber to pulpwood. In Brazil, it makes an important contribution to the resin production industry. The preferred method of regenerating P. elliottii is by clearcutting followed by chemical or mechanical site preparation, then direct seeding or planting of nursery stock. Although natural regeneration by seedtree, shelterwood, or group selection is an option, availability of genetically superior stock usually makes planting the favoured method of regeneration. Rotation lengths vary according to product objective. The optimum pulpwood rotation is about 25 years. In unthinned plantations, this age increases to 30 from 23 years as density increases and site index declines. South Florida slash pine (P. elliottii var. densa) is characterized by a grasslike, almost stemless stage, that lasts for 2 to 6 years. Variety densa has a small range, a less desirable tree form than var. elliottii, and is more difficult to regenerate. P. elliottii is particularly susceptible to fusiform rust (caused by Cronartium fusiforme) and is frequently attacked by the southern pine bark beetle (Dendroctonus frontalis). The best protection against insect attack is to maintain vigorous, healthy stands through good forest management. The wood is used for a wide variety of products. Markets and size and quality of the material determine whether it is used for sawlogs, veneer logs, poles, pilings, posts, pulpwood, particle board, or chip-n-saw logs. The straightness of the bole makes P. elliottii particularly suited for poles, pilings, and solid-wood products. Although it may often grow more slowly than P. patula and P. taeda, it can produce higher pulpwood yields due to its higher wood density. P. elliottii yields the best quality and highest quantity of commercial turpentine of all American pitch pines (Streets, 1962). However, this use has declined significantly as other sources of resins have become more readily available.


1987 ◽  
Vol 7 (3) ◽  
pp. 243-254 ◽  
Author(s):  
Anne Trinkle Jones ◽  
Robert C. Euler

For a number of years archaeologists have discussed the effects of forest fires on archaeological resources. Studies under experimental conditions and of sites after they were burned form the bulk of this effort but, for the most part, they have not been published. This article examines the fire history of the North Rim of the Grand Canyon and the effects of the Dutton Point wildfire on prehistoric architecture and artifacts—particularly ceramics. Armed with those data, a modest experiment useful in any proposed prescribed fire area containing cultural resources, was designed. This involved “before and after” studies of a ruin that was to be subjected to prescribed burning and included buried temperature controls and the varying effects upon the resource. Finally, a hypothesis regarding the effect of wildfires on archaeological sites is presented.


Author(s):  
Lisa Floyd-Hanna ◽  
Bill Romme

Mesa Verde consists of a series of mesas in a north to south trend. The mesa tops are narrow strips, cut by numerous canyons of varying depth. Mesa Verde sandstones, particularly the Cliff House Formation, form the canyon slopes. Long Mesa, an area of focus in this study, has an elevation 2180 m at the south to 2517 m at the north end. Long Canyon cuts down to an elevation of 2133 m. The vegetation on Long Mesa is a mosaic of mature pinon-juniper woodlands and mountain shrub associations. Shrub associations range from Gambels oak, (Quercus gambelii), and serviceberry, (Amelancheir utahensis), to Black Sagebrush, Artemesia nova), and Bitterbrush, (Purshia tridentata). Although there is a body of information concerned with the effect of fire on pinon-juniper woodlands, there are no adequate studies of the shrub-rich pinon-juniper ecosystem of Colorado. Succession following fire was documented by Erdman (1970) in Mesa Verde National Park. He reported that annuals dominate initially, then perennial grasses and forbs, followed by shrub invasion. The open shrub stage becomes a "thicket" approximately 100 years after the fire. The shrubs, he suggests, are outcompeted by pinon and juniper trees, which dominate by about 300 years. Fire and its relationship to resource management in Mesa Verde Park has been outlined by Omi and Emrick (1980). Focus was given to succession (cover and frequency of grass and shrub elements) following the 1873, 1934, and 1972 fires, and models predict the possibilities of control over moderate and severe fires in various vegetation classes within the Park. The study was concerned primarily with the nature of fire behavior and various fire-related management tools for use by Resource Management personnel.


2001 ◽  
Vol 10 (1) ◽  
pp. 53 ◽  
Author(s):  
Eric S. Menges ◽  
Mark A. Deyrup

We used path analysis to examine postfire survival of south Florida slash pine (Pinus elliottii var. densa) at Archbold Biological Station in south-central Florida. We considered the interacting factors of bark beetle infestation, fire intensity (estimated by bark char, percentage of canopy green, and other measures), season of burn, burn size, and vegetation structure and composition. Trees were sampled in 24 burned areas for 3 years after each fire. Fires on recently-burned sites (5–19 years since previous fire) killed fewer trees (44% mortality) than fires on sites > 25 years postfire (71%). For long-unburned sites, we used multiple regression to examine 35 variables and form a path model linking nine variables at four levels. Pine survival was most affected by season of burn; fall burns decreased survival indirectly through increases in fire intensity. Higher mortality was associated with greater char height, larger area burned, more intense attacks by the beetle Platypus, occurrence of hickory scrub or flatwoods vegetation, and complete needle consumption. The final path model explained over 90% of the variation in pine survival. It suggested that beetle effects reflect fire intensity, and detailed many complex interactions. Both preburn and fire intensity data were needed to explain a high amount of variance. Analyses of survival within burns produced similar results, but added some patterns due to vegetation differences within burns and higher survival for larger trees. Fire-induced south Florida slash pine mortality did not spread to trees growing in adjacent, unburned areas. Fire intensity may influence pine densities over the upland landscape in all but the most xeric and hydric sites. Fire management to maximize pine survival is feasible, but management for landscape heterogeneity will tolerate variation in fire intensity and pine survival.


Sign in / Sign up

Export Citation Format

Share Document