scholarly journals Experimental Study on the Aerodynamic Sealing of Air Curtains

Fluids ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 49 ◽  
Author(s):  
João Viegas ◽  
Fernando Oliveira ◽  
Daniel Aelenei

Controlling the air quality is of the utmost importance in today’s buildings. Vertical air curtains are often used to separate two different climatic zones with a view to reduce heat transfer. In fact, this research work proposes an air curtain aimed to ensure a proper separation between two zones, a clean one and a contaminated one. The methodology of this research includes: (i) small-scale tests on water models to ensure that the contamination does not pass through the air curtain, and (ii) an analytical development integrating the main physical characteristics of plane jets. In the solution developed, the airflow is extracted from the contaminated compartment to reduce the curtain airflow rejected to the exterior of the compartment. In this research work, it was possible to determine the minimum exhaust flow necessary to ensure the aerodynamic sealing of the air curtain. This article addresses the methodology used to perform the small-scale water tests and the corresponding results.

2021 ◽  
Author(s):  
Jueren Xie ◽  
Dale Friesen ◽  
Mark Droessler ◽  
Tim Roth ◽  
Junfeng Xie

Abstract Qualification of tubular connections is an important task in well completion design for thermal wells, which experience peak temperatures of 180°C to 350°C, as well as high pressure and high temperature (HPHT) wells, which experience peak temperatures up to 180°C and pressures greater than 70 MPa. Industry protocols (such as ISO/PAS 12835:2013 for thermal wells, and ISO 13679:2019 and API RP 5C5:2017 for HPHT wells) have been developed for the purposes of evaluating the structural integrity and sealability of premium connections. In recognition of the the time and capital expense associated with completing "product line validation" for a connection design per these standards for multiple physical configurations (i.e for combinations of various sizes, weights, and grades), industry is developing a hybrid approach that supplements results from physical qualification tests with numerical simulation, such as Finite Element Analysis (FEA). To facilitate numerical modeling, extensive research work has been performed recently (e.g. Xie, Matthew, and Hamilton (2016) and Xie and Matthew (2017)) to establish a constitutive relationship for evaluating metal-to-metal sealability. It was noted in previous studies that further experimental work is required to better understand connection sealing behavior, especially the effects of surface roughness and thread compounds. This paper presents an experimental study with a series of small-scale metal-to-metal seal tests under various levels of seal contact stress and gas pressures representative of thermal and HPHT operational conditions. These tests incorporated the effects of surface roughness and thread compound. FEA was performed to model the stress conditions in the test specimens. Based on the experimental and analytical study, an updated metal-to-metal seal evaluation criterion with calibrated parameters is proposed for tubular connections used in thermal and HPHT applications.


Author(s):  
Sourav Chowdhury ◽  
Ebrahim Al-Hajri ◽  
Serguei Dessiatoun ◽  
Amir Shooshtari ◽  
Michael Ohadi

Only recently, experimental data is available in open literature in condensation of various refrigerants in small hydraulic diameter microchannels. The phenomenon of two-phase flow and heat transfer mechanism in small diameter microchannels (< 1 mm) may be different than that in conventional tube sizes due to increasing dominance of several influencing parameters like surface tension, viscosity etc. This paper presents an on-going experimental study of condensation heat transfer and pressure drop of refrigerant R134a is a single high aspect ratio rectangular microchannel of hydraulic diameter 0.7 mm and aspect ratio 7:1. This data will help explore the condensation phenomenon in microchannels that is necessary in the design and development of small-scale heat exchangers and other compact cooling systems. The inlet vapor qualities between 20% and 80% and mass fluxes of 130 and 200 kg/m2s have been studied at present. The microchannel outlet conditions are maintained at close to thermodynamic saturated liquid state through a careful experimental procedure. A unique process for fabrication of the microchannel involving milling and electroplating steps has been adopted to maintain the channel geometry close to design values. Measurement instruments are well-calibrated to ensure low system energy balance error, uncertainty and good repeatability of test data. The trends of data recorded are comparable to that found in recent literature on similar dimension tubes.


2020 ◽  
Vol 92 (3) ◽  
pp. 30901
Author(s):  
Suvanjan Bhattacharyya ◽  
Debraj Sarkar ◽  
Ulavathi Shettar Mahabaleshwar ◽  
Manoj K. Soni ◽  
M. Mohanraj

The current study experimentally investigates the heat transfer augmentation on the novel axial corrugated heat exchanger tube in which the spring tape is introduced. Air (Pr = 0.707) is used as a working fluid. In order to augment the thermohydraulic performance, a corrugated tube with inserts is offered. The experimental study is further extended by varying the important parameters like spring ratio (y = 1.5, 2.0, 2.5) and Reynolds number (Re = 10 000–52 000). The angular pitch between the two neighboring corrugations and the angle of the corrugation is kept constant through the experiments at β = 1200 and α = 600 respectively, while two different corrugations heights (h) are analyzed. While increasing the corrugation height and decreasing the spring ratio, the impact of the swirling effect improves the thermal performance of the system. The maximum thermal performance is obtained when the corrugation height is h = 0.2 and spring ratio y = 1.5. Eventually, correlations for predicting friction factor (f) and Nusselt number (Nu) are developed.


2010 ◽  
Vol 41 (8) ◽  
pp. 889-900 ◽  
Author(s):  
Daniel Thibault ◽  
Matthieu Fenot ◽  
Gildas Lalizel ◽  
Eva Dorignac

Sign in / Sign up

Export Citation Format

Share Document