scholarly journals Time-Periodic Cooling of Rayleigh–Bénard Convection

Fluids ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 87
Author(s):  
Lyes Nasseri ◽  
Nabil Himrane ◽  
Djamel Eddine Ameziani ◽  
Abderrahmane Bourada ◽  
Rachid Bennacer

The problem of Rayleigh–Bénard’s natural convection subjected to a temporally periodic cooling condition is solved numerically by the Lattice Boltzmann method with multiple relaxation time (LBM-MRT). The study finds its interest in the field of thermal comfort where current knowledge has gaps in the fundamental phenomena requiring their exploration. The Boussinesq approximation is considered in the resolution of the physical problem studied for a Rayleigh number taken in the range 103 ≤ Ra ≤ 106 with a Prandtl number equal to 0.71 (air as working fluid). The physical phenomenon is also controlled by the amplitude of periodic cooling where, for small values of the latter, the results obtained follow a periodic evolution around an average corresponding to the formulation at a constant cold temperature. When the heating amplitude increases, the physical phenomenon is disturbed, the stream functions become mainly multicellular and an aperiodic evolution is obtained for the heat transfer illustrated by the average Nusselt number.


1981 ◽  
Vol 102 ◽  
pp. 85-100 ◽  
Author(s):  
D. E. Fitzjarrald

Convection flows have been systematically observed in a layer of fluid between two isothermal horizontal boundaries. The working fluid was a nematic liquid crystal, which exhibits a liquid–liquid phase change at which latent heat is released and the density changed. In addition to ordinary Rayleigh–Bénard convection when either phase is present alone, there exist two distinct types of convective motions initiated by the unstable density difference. When a thin layer of heavy fluid is present near the top boundary, hexagons with downgoing centres exist with no imposed thermal gradient. When a thin layer of light fluid is brought on near the lower boundary, the hexagons have upshooting centres. In both cases, the motions are kept going once they are initiated by the instability due to release of latent heat. Relation of the results to applicable theories is discussed.



2011 ◽  
Vol 688 ◽  
pp. 461-492 ◽  
Author(s):  
Stephan Weiss ◽  
Guenter Ahlers

AbstractWe report on the influence of rotation about a vertical axis on the large-scale circulation (LSC) of turbulent Rayleigh–Bénard convection in a cylindrical vessel with aspect ratio $\Gamma \equiv D/ L= 0. 50$ (where $D$ is the diameter and $L$ the height of the sample). The working fluid is water at an average temperature ${T}_{av} = 40{~}^{\ensuremath{\circ} } \mathrm{C} $ with a Prandtl number $\mathit{Pr}= 4. 38$. For rotation rates $\Omega \lesssim 1~\mathrm{rad} ~{\mathrm{s} }^{\ensuremath{-} 1} $, corresponding to inverse Rossby numbers $1/ \mathit{Ro}$ between 0 and 20, we investigated the temperature distribution at the sidewall and from it deduced properties of the LSC. The work covered the Rayleigh-number range $2. 3\ensuremath{\times} 1{0}^{9} \lesssim \mathit{Ra}\lesssim 7. 2\ensuremath{\times} 1{0}^{10} $. We measured the vertical sidewall temperature gradient, the dynamics of the LSC and flow-mode transitions from single-roll states (SRSs) to double-roll states (DRSs). We found that modest rotation stabilizes the SRSs. For modest $1/ \mathit{Ro}\lesssim 1$ we found the unexpected result that the vertical LSC plane rotated in the prograde direction (i.e. faster than the sample chamber), with the rotation at the horizontal midplane faster than near the top and bottom. This differential rotation led to disruptive events called half-turns, where the plane of the top or bottom section of the LSC underwent a rotation through an angle of $2\lrm{\pi} $ relative to the main portion of the LSC. The signature of the LSC persisted even for large $1/ \mathit{Ro}$ where Ekman vortices are expected. We consider the possibility that this signature actually is generated by a two-vortex state rather than by a LSC. Whenever possible, we compare our results with those for a $\Gamma = 1$ sample by Zhong & Ahlers (J. Fluid Mech., vol. 665, 2010, pp. 300–333).



2016 ◽  
Vol 798 ◽  
pp. 628-642 ◽  
Author(s):  
Shu-Ning Xia ◽  
Zhen-Hua Wan ◽  
Shuang Liu ◽  
Qi Wang ◽  
De-Jun Sun

Flow reversals in two-dimensional Rayleigh–Bénard convection led by non-Oberbeck–Boussinesq (NOB) effects due to large temperature differences are studied by direct numerical simulation. Perfect gas is chosen as the working fluid and the Prandtl number is 0.71 for the reference state. If NOB effects are included, the flow pattern $P_{11}$ with only one dominant roll often becomes unstable by the growth of the cold corner roll, which sometimes results in cession-led flow reversals. By exploiting the vorticity transport equation, it is found that the asymmetries of buoyancy and viscous forces are responsible for the growth of the cold corner roll because both such asymmetries cause an imbalance between the corner rolls and the large-scale circulation (LSC). The buoyancy force near the cold wall increases and decreases near the hot wall originating from the temperature-dependent isobaric thermal expansion coefficient ${\it\alpha}=1/T$ if NOB effects are included. Moreover, the decreased dissipation due to lower viscosity is favourable for the growth of the cold corner roll, while the increased viscosity further suppresses the growth of the hot corner roll. Finally, it is found that the boundary layer near the cold wall plays an important role in the mass transport from LSC to corner rolls subject to mass conservation.



2010 ◽  
Vol 648 ◽  
pp. 509-519 ◽  
Author(s):  
JÖRG SCHUMACHER ◽  
OLIVIER PAULUIS

We study shallow moist Rayleigh–Bénard convection in the Boussinesq approximation in three-dimensional direct numerical simulations. The thermodynamics of phase changes is approximated by a piecewise linear equation of state close to the phase boundary. The impact of phase changes on the turbulent fluctuations and the transfer of buoyancy through the layer is discussed as a function of the Rayleigh number and the ability to form liquid water. The enhanced buoyancy flux due to phase changes is compared with dry convection reference cases and related to the cloud cover in the convection layer. This study indicates that the moist Rayleigh–Bénard problem offers a practical framework for the development and evaluation of parameterizations for atmospheric convection.



2004 ◽  
Vol 59 (4-5) ◽  
pp. 266-274
Author(s):  
B. S. Bhadauria

The linear thermal instability of a horizontal fluid layer with time-periodic temperature distribution is studied with the help of the Floquet theory. The time-dependent part of the temperature has been expressed in Fourier series. Disturbances are assumed to be infinitesimal. Only even solutions are considered. Numerical results for the critical Rayleigh number are obtained at various Prandtl numbers and for various values of the frequency. It is found that the disturbances are either synchronous with the primary temperature field or have half its frequency. - 2000 Mathematics Subject Classification: 76E06, 76R10.



2021 ◽  
Vol 136 (1) ◽  
pp. 10003
Author(s):  
Lucas Méthivier ◽  
Romane Braun ◽  
Francesca Chillà ◽  
Julien Salort

Abstract We present measurements of the global heat transfer and the velocity field in two Rayleigh-Bénard cells (aspect ratios 1 and 2). We use Fluorinert FC770 as the working fluid, up to a Rayleigh number . The velocity field is inferred from sequences of shadowgraph pattern using a Correlation Image Velocimetry (CIV) algorithm. Indeed the large number of plumes, and their small characteristic scale, make it possible to use the shadowgraph pattern produced by the thermal plumes in the same manner as particles in Particle Image Velocimetry (PIV). The method is validated in water against PIV, and yields identical wind velocity estimates. The joint heat transfer and velocity measurements allow to compute the scaling of the kinetic dissipation rate which features a transition from a laminar scaling to a turbulent Re 3 scaling. We propose that the turbulent transition in Rayleigh-Bénard convection is controlled by a threshold Péclet number rather than a threshold Rayleigh number, which may explain the apparent discrepancy in the literature regarding the “ultimate” regime of convection.



Author(s):  
Gary A. Glatzmaier

This chapter presents a model of Rayleigh–Bénard convection. It first describes the fundamental dynamics expected in a fluid that is convectively stable and in one that is convectively unstable, focusing on thermal convection and internal gravity waves. Thermal convection and internal gravity waves are the two basic types of fluid flows within planets and stars that are driven by thermally produced buoyancy forces. The chapter then reviews the equations that govern fluid dynamics based on conservation of mass, momentum, and energy. It also examines the conditions under which the Boussinesq approximation simplifies conservation equations to a form very similar to that of an incompressible fluid. Finally, it discusses the key characteristics of the model of Rayleigh–Bénard convection.



Sign in / Sign up

Export Citation Format

Share Document